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Abstract

With the advent of the Covid-19 pandemic, labour-force survey non-response rates
have surged in many countries. We show that in the case of Canada, the bulk of
this increase can be explained by the suspension of in-person interviews following the
adoption of telework in Federal agencies, including Statistics Canada. Individuals with
vulnerabilities to the Covid-19 economic shock—i.e., the young, low-educated, low-
salary, low job-tenure individuals, and those working in occupations with low telework
potential—have been harder to reach and have been gradually less and less represented
in the Canadian Labour Force Survey (LFS) during the pandemic. Using exogenous
variation in the assignment of individuals to the different LF'S rotations, we present
evidence suggesting that the decline in employment and labour-force participation have
been underestimated over the March-July 2020 period. We believe, however, that
these non-response biases have been moderate when contrasted with the unprecedented
severity of the Covid-19 disruption. Furthermore, since attrition only represents a
minor part of the non-response increase, we argue that one should not expect additional
difficulties when using panels as compared to cross-sectional samples, and when using
public-use LFS files instead of restricted-access files. All in all, the LFS remains a

reliable data source for analyzing the economic impact of Covid-19 in a timely manner.
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1 Introduction

The propagation of Covid-19 in Canada and throughout the world has resulted in a tremen-
dous and pervasive disruption of economic activity. Statistical agencies have clearly not
been spared and their data collection activities have been severely constrained. As a result,
survey non-response rates have dramatically surged, raising concerns about the reliability of
statistics in Covid times (e.g., Rothbaum & Bee (2021)). Yet, a substantial body of work
analyzing the economic impact of Covid-19 has been based on survey data (e.g., Baylis et al.
(2020); Forsythe et al. (2020); Lemieux et al. (2020); Jones et al. (2021)). This research has
critical public policy implications, making it crucial to evaluate the impact of Covid-19 on
this type of data source. In particular, it has been widely documented that the impact of
the downturn has been highly heterogeneous across individuals, and as such, a key question
is whether non-response is more likely among subgroups with characteristics correlated with
Covid-19 labour-market outcomes. This paper presents evidence showing that in the case of
the Canadian Labour Force Survey (LFS), non-response has been significantly higher among

individuals who have been among the most impacted by the Covid shock.

The LFS has been characterized by persistently high non-response rates since the onset of
Covid. Non-response started to rapidly climb as of March 2020 when lockdowns were being
imposed, reaching 29.5% in August 2020, and remaining stubbornly high for the remainder
of the year. To give some historical perspective, prior to the pandemic the monthly non-
response rate had never exceeded 14% since the advent of the modern-day LFS in 1976
(Brochu 2021). As a comparison, the increase in the non-response rate of the U.S. Current
Population Survey (CPS) was very sharp but relatively short-lived (see figure[)). Our analysis
shows that the major part of the persistent increase in LF'S non-response can be attributed
to the suspension of in-person interviews at Statistics Canada, as a result of the adoption of
telework arrangements in federal agencies. It has made it more difficult for LFS surveyors
to contact the most vulnerable individuals over the course of the pandemicll] Our results
suggest that the youngest, low-educated, low job-tenure, low-salary individuals and those

working in occupations with low potential for telework have been the hardest to reach.

Our analysis is based on the master (confidential-use) files of the LFS which provide key

information about non-response and more generally, about the information collecting process

'The CPS also suspended in-person interviews as of March 2020. However, contrary to the LFS, the CPS
restarted in-person interviews in some areas of the country as of July 2020, expanding to the whole country
beginning in September 2020. As of January 2020, the LFS had yet to resume in-person interviews. It should
be noted that before the pandemic, only a minority of interviews were carried out in person, and this holds
true for both LFS and CPS. Finally, it is important to recognize that although the CPS non-response rates
did come back down after their initial surge, they did not return to pre-pandemic levels.



for the different individuals appearing in the survey. Specifically, the master data allows
for precise tracking of each individual’s LF'S history, including their assigned rotation, and
whether or not they have been reached across monthsE| These features are key to our
analysis. For instance, they allow us to show that most of the increase in non-response
can be accounted for by birth non-response (i.e., the failure to establish initial contact with
individuals in a sampled household) rather than subsequent non-response (the failure to

collect current information on individuals who have already been reached in a prior month).

The information about the type of non-response allows us to trace back the increase in non-
response to the suspension of in-person interviews, which historically have played a key role
in establishing contact with households. Furthermore, the importance of birth relative to
subsequent non-response has implications for the impact of Covid-19. Indeed, subsequent
non-response allows for the imputation of labour-market information to individuals based on
their pre-existing information, as opposed to birth non-response for which no information is
known. Thus, birth non-response, if non-random, induces a change in the structure of LFS
samples. For instance, those most mobile might be harder to reach, which might explain
why youths and low—job-tenure (conditional on age) individuals tend to be more likely to be

interviewed in person (in normal times).

Due to the changes in sample structure resulting from the increase in non-response, we might
expect that labour-market estimates have been affected by a non-response bias.E| To test for
the presence of selection based on characteristics correlated with Covid-19 labour-market
outcomes, we again make use of the individual’s rotation information that is available in our
LFS files. Essentially, we compare the impact of Covid on employment and participation
across two groups of individuals: those who have been assigned to rotations that entered
the LFS just before the onset of Covid-19 (i.e. before March 2020) and those assigned to
rotations that joined afterwards. These two groups have been selected according to two

different rules: for the former group, in-person interviews were available, but for the latter

2As with many labour force surveys, e.g., the CPS (U.S.) and Enquéte Emploi (France), the LFS has
a rotating sample design. LFS Households are surveyed for six consecutive months, with one-sixth of the
households being replaced every month. Said differently, households are assigned to rotations that enter the
LFS in a staggered manner. For example, rotations 1 and 2 enter in January and February of each year,
only to be replaced by two new groups of households in July and August, respectively. Note that due to
household non-response, a household may not be observed in all six months of its rotation’s stay in the LFS.

3 As discussed later in the paper, the LFS weights mitigate but do not completely eliminate, the potential
issues generated by the changing sample structure. The LFS weights are adjusted to correct for relative
differences in the prevalence of non-response across groups based on a list of key socio-demographic and
labour-market variables (including, for example, age, employment, and industries). As such, the weights do
not correct for dimensions not taken into account in this adjustment process (e.g., education, occupations,
and job tenure).



group, they were not. Assuming that the assignment to rotations is uncorrelated with labour-
market outcomes in a given survey monthﬁ a different impact across the two groups should

be due to differences in structure—a result of their different selection rules.

We find that for the early Covid months, the employment and participation impacts are
different across rotations that entered the LFS pre- and post—Covid.lﬂ Hence, we cannot reject
the null hypothesis of an absence of selection along individual characteristics correlated with
Covid outcomes. Our (weighted) regressions suggest that estimates based on the entire LFS
sample have underestimated the negative impact of Covid: being assigned to a post-Covid
rotation is associated with a lower Covid impact, consistent with our evidence that the most
vulnerable have been the hardest to reach. The magnitude of the discrepancy is relatively
high for the 50-64 year-olds, which suggests that employment and participation losses have

been especially underestimated among this group.

A limitation of our approach is that since the group of individuals assigned to pre-Covid
rotations is also affected by an increase in non-response, we cannot make conclusions on the
size of the bias. Under mild assumptions on the effect of non-responses samples, we can
only conclude about the sign of the bias. We believe, however, that biases have moderate
magnitude and do not change the narrative for the Covid-19 aggregate labour-market dy-
namics that has been proposed so far. One of the main reasons to be optimistic is that LFS
non-response rates have remained at moderate levels despite a substantial increase: a rate
of 30%, as observed in the second half of 2020, would be considered more than acceptable
for the greater majority of surveys—even before Covidﬁ However, our results shed light on
the importance of being careful when analyzing Covid outcomes of specific subgroups—e.g.,

the oldest or those belonging to incoming rotations.

Throughout our analysis, we discuss the implications of the pandemic disruption for research
based on LFS data. The surge in non-response raises two important questions: first, should
researchers expect additional difficulties when carrying out a longitudinal analysis? Building
panels requires that one be able to follow individuals over time and, therefore, it imposes
additional sample restrictions. However, since subsequent non-response, and, as such, panel

attrition is a mild issue (at least when compared to birth non-response) there are no sub-

4Given the design of the LFS, there is no reason to believe that as of a particular month, say March, that
households assigned to different rotations would have systematically different labour market outcomes.

5For ease of notation, we will refer to a pre-Covid rotation as one that joined the LFS prior to the advent
of Covid. Similarly, a post-Covid rotation is defined as one that entered the LFS in the Covid-era.

6Tt has been widely documented that non-response has been increasing over the past few decades in
Canada and abroad (e.g., Barrett et al. (2014); Meyer et al. (2015); Bernhardt et al. (2021)). Although one
did see a modest rise in LFS non-response rates in the 2000s, they stabilized in the 10-12% range over the
past decade prior to the Covid outbreak.



stantial differences between panels and cross-sectional samples in terms of their structure,
including socio-demographic characteristics. The second question is to what extent it is
critical to use the LFS master files (as opposed to public-use files) when focussing on the
pandemic period? The master files provide information on data imputation that is not made
available in the public-use files. Given the surge in non-response, it is natural to expect that
such information is beneficial for producing a robust statistical analysis, but the benefit must
be balanced with the administrative costs of accessing master ﬁlesﬂ And once again, the
fact that subsequent non-response is a mild issue implies that the benefit of using master

files is not as high as one could expect at first sight regarding data-imputation concerns.

A vast literature has analyzed the economic impact of Covid-19, but much less is known
about the impact upon data quality. Information is becoming available to researchers on the
impact upon U.S. datasets, whether it be from the U.S. Bureau of Labour Statistics (e.g., U.S.
Bureau of Labor Statistics (2020)), third-party data providers (e.g., IPUMS-CPS), or other
researchers themselves (e.g., Montenovo et al. (2020); Rothbaum & Bee (2021)). However,
little (if any) is known about how Canadian data were impactedﬂ Yet, the LFS has been
widely relied upon due to its timeliness (the microdata is published less than a month after it
has been collected), and its high frequency (i.e. monthly). It is a workhorse of the Canadian
Covid literatureﬂ and more generally, of the Canadian labour-market literaturem Moreover,
researchers who rely on the LFS often use multiple decades of data (e.g., Brochu & Green
(2013); Jones & Riddell (2019)). Therefore, understanding how the data were affected by
Covid-19, even if the impact turns out to be only short-term in nature, will be of relevance

to researchers and policy-makers for years to come. Our paper takes a step in this direction.

"When choosing between public-use and master files of the LFS, researchers face a trade-off between easy
access and information richness, as discussed in Brochu (2021). Assessing this trade-off is crucial in the case
of Covid-time data given that the master files allow for the identification of individuals for whom labour-
market information has been imputed due to subsequent non-response (i.e. for whom previous information
has been collected and is used for imputing missing information—see the main text for details).

8Brochu (2021) provides a very brief overview of how Covid-19 affected non-response in the early stages
of the pandemic. It cites an earlier working paper version of this paper, i.e. Brochu et al. (2020), as evidence
suggesting that there is reason to be optimistic about the reliability of LFS data during Covid times.

9See for example, Achou et al. (2020); Baylis et al. (2020); Béland et al. (2020); Béland et al. (2020b);
Blit (2020); Bryan et al. (2021); Gallacher & Hossain (2020); Jones et al. (2020); Koebel & Pohler (2020);
Lemieux et al. (2020); Messacar et al. (2021); Qian & Fuller (2020).

108ee for example, Kroft et al. (2019). Of note, the LFS has been used to examine the impact of a variety
of labour market policies such as disability insurance (e.g., Milligan & Schirle (2019)), employment insurance
(e.g., Lluis & McCall (2019)) and universal child care benefits (e.g., Schirle (2015)), to name a few.



2 Covid-19 and non-response in the LFS

The main events that marked the propagation of Covid-19 in Canada (and worldwide) are
now well known. The first Canadian case was reported at the end of January 2020, and
by mid- to late March, provincial governments had shut down all non-essential activities.
These restrictions were eased during the summer of 2020, but were partially reimposed amid
the second and third waves of the outbreak, in the fall of 2020 and the spring of 2021,
respectively[lT| As of April 2021, the country had more than a million confirmed cases, with
an associated 23,000 deaths.

The shutdown policies of early spring 2020 also impacted the data collection activities of
Statistics Canada. The first significant manifestation of this disruption is the surge in house-
hold non-response rates that followed the outbreak. Between February and March 2020, the
LFS non-response rate almost doubled, rising from 11.9% to 22.1%. Although there have
always been regional differences, i.e. non-response rates tend to be slightly higher in Western
Canada, the impact of the pandemic was felt country-wide. This upward trend continued
thereafter, reaching 30.7% in September 2020. The impact has been strikingly persistent,
despite the successive easing and tightening phases of social-distancing restrictions. As of

the beginning of 2021, the non-response rate was still around 30%.

One could argue that the rise in non-response is due to a (drastic) change in the behaviour
of potential respondents in response to the Covid-19 shock. It is more likely, however, that
it has been caused by a shift in the conduct of Statistics Canada’s activities, as indicated by
the timing of the increase—clearly concomitant to the start of the first national shutdown—
and by its striking persistence. As of March 2020, federal agencies were instructed to adopt
telework for the majority of their employees, i.e. federal workers were required to work from
home whenever and wherever possible. Statistics Canada followed suit by suspending its field
activities. This represented an important change in the data collection process: interviews
could no longer carried out in person, and as such, the LFS had to rely on its other two

modes of collection (phone and online) for all interviews.

At first sight, one might think that the changes in collection methods were not dramatic (see
figure , since the vast majority of interviews were being conducted by phone or online—
even before the pandemic (92.8% in 2019). However, a bit more context is required. The LFS

has three modes of interview—in person, by phone, and online. In normal times, in-person

HThere was much commonality in how provinces responded to the outbreak, with more draconian measures
being imposed when cases counts became too high (e.g., shutting down in-person schooling). There were,
however, some regional differences. Atlantic Canada, for example, was quicker to impose inter-provincial
travel restrictions, and Quebec was the only province to impose a nightly curfew.



interviews are conducted for a significant minority of birth interviews (34.5% in 2019)E
It is also the fall back approach if phone interviewing is unsuccessful (e.g., the telephone
number associated to the dwelling proved to be incorrect)ﬁ These policies reflect the fact
that the in-person mode of collection, although more expensive, is known to be effective for
making first contact. As such, the halt of in-person interviews is expected to impact non-
response rates. Due to the rotating nature of the sample, there is a potential for a significant
stock-flow effect: the increased difficulties in making first contact in the incoming rotation
can propagate to the ensuing months of the six-month window. A similar argument can be
made for subsequent non-response given that in-person contact can help build a relationship
with the household. It then follows that an apparently modest shift in interview modes can

potentially generate a high and persistent increase in non-response rates, as seen in figure [I}

The suspension of in-person interviewing may only be part of the story, however. In pre-
Covid times, telephone interviews were conducted from call centres. The adoption of telework
arrangements at Statistics Canada required dispatching surveyors out of these centres, which
could have resulted in efficiency losses. Given that it is a long-running survey, the LF'S has
experienced many expected and unexpected changes/shocks over the years, which can give
us guidance on the impact of this most recent “reorganizational” effectE If past experiences
are any indication, such changes do impact non-response rates due to the tight production
deadline from enumeration to its public release. Having said this, the effects are of sec-
ond order importance, and most importantly, temporary in nature as compared to what is
observed in Covid times. As an illustration, the Quebec non-response rate reached 11.4%
during the January 1998 Quebec ice storm, only to come back to 6.2% (a more typical rate
at that time) in the following month (Statistics Canada 1998). All in all, these facts point

toward the idea that the suspension of in-person interviews is the main explanation behind

2Historically the LFS followed a warm telephone approach where the birth interview was in-person,
and subsequent interviews were over the phone. Telephone First Contact (TFC) was introduced in 2004
whereas some birth interviews were to be done by phone from a centralized call centre, conditional on a
telephone number being available. It should be noted, however, that the LFS had started using telephone
birth interviews for those living in high-rises in 1990 and there is mention that it was also used in cases
where there was no contact after a personal visit (Sheridan et al. 1997). As such, telephone birth interviews
had started growing in importance even before the advent of TFC, i.e. 34.6% of all birth interviews were
conducted by phone in 2003. TFC just accelerated its rise. In 2005, after the introduction of TFC, telephone
interviewing made up, for the first time, the majority of birth interview (i.e. 55.4%). The number of telephone
interviews has continued to creep up after that, reaching 65.5% in 2019.

130ther possible reasons for switching to in-person interviewing include: i) two consecutive months of non
contact, ii) a telephone number could not be obtained for the dwelling, and iii) the respondent requested
in-person interviews (Statistics Canada 2017).

4Planned changes have included the introduction of computer-assisted interviewing, TFC, centralized
telephone interviewing (at call centres), web-interviewing, and new computer applications, to name but a
few. Some unexpected shocks that have occurred include bad weather, an interviewer strike, and computer
difficulties.



the persistent surge in non-response rates.

3 Implications of Covid-19 non-response for LFS data

This section analyzes the implications of the surge in non-response since the onset of the
outbreak for labour-market estimates that are based on LF'S data. The analysis distinguish
two types of non-response: birth and subsequent non-response. Birth non-response refers
to an impossibility to establish a first contact with households living in sampled dwellings.
Subsequent non-response refers to the inability to reach a household in the current month
after contact has been made in a prior month. For instance, consider a household belonging
to the incoming rotation of the March 2021 LFS. Suppose first contact is only made in May,
i.e. the household could not be reached in either March or April; additionally, assume the
household is away in June. In this case, the March and April non-responses are counted as

birth non-response, whereas the June non-response is counted as subsequent.

The reason one should care about the distinction is that the missing information result-
ing from subsequent non-response can be imputed using the available information of the
household. During the household’s birth interview, Statistics Canada first collects socio-
demographic information of all household members, and then gathers their labour-market
detail. In subsequent interviews, only the labour-market information is updated; in the case
of subsequent non-response, the socio-demographic information is used, in combination with
previous labour-market information to impute the current missing information [’] Obviously,
in the case of birth non-response, imputation is not possible, and the household remains out

of the LFS sample as long as it cannot be reached by the surveyors.

3.1 The relative importance of birth vs. subsequent non-response

The two types of non-response have different implications for labour-market estimates. Birth
non-response could induce additional selection in the LF'S sample along observable and non-
observable characteristics that is correlated with labour-market outcomes. On the other

hand, subsequent non-response resulting in imputation could introduce additional measure-

15This is referred to as a “hot-deck” imputation procedure, which works as follows: a group of individual
“donors” for whom complete labour-market information has been collected is formed (after excluding outliers
with extreme hourly wage values compared to individuals within the same sex/age/province group); then,
individuals with missing information are randomly matched with a donor with similar characteristics, and
are imputed the information of the donor. In the case of individuals with missing information due to non-
response, the matching with a donor is based on a series of socio-demographic variables and information
regarding last month’s labour-force status and industry. See Statistics Canada (2017) for a more detailed
description of the imputation procedure.



ment or classification error. It is therefore important to assess the relative importance of the

two non-response causes, and how they have been affected by the Covid-19 disruptions.m

We cannot directly attribute a share of non-response due one motive or the other, because we
do not have information on the number of individuals living in non-respondent households;
recall non-response rates are defined at the household level. However, we know from our
restricted-use LFS files the number of individuals with fully imputed information, i.e. the
number of individual whole record imputation (WRI) cases. This information allows us, with
the help of some mild identifying assumptions, to disentangle the two types of non—responsem
For our empirical analysis—when relying on the restricted-use LFS files—we restrict our
attention to civilian workers aged 20 to 64, and exclude those living in the territories. We
impose the age restrictions so as to compare our findings with existing evidence regarding
the Covid-19 shutdown (e.g., Lemieux et al. (2020), Jones et al. (2020)) [ It should be noted
that the main conclusions of our paper hold true when the age restrictions are loosened. An
upper age limit is needed, however, for the part of the analysis where we identify subsequent
non-response using WRI information. This is the case because respondents 70 years and
above are only interviewed once, and all their labour market information are automatically

carried forward into the remaining months of the six-month window [']

The (blue) solid line in figure 3] tracks over time the sample that includes WRI cases—the
unrestricted sample observed by researchers. Assuming that in the absence of Covid, the
sample would have remained roughly similar beyond February 2020 (i.e. around 70,000 as
it has been for all of 2019), the drop beyond this threshold approximates the number of
individuals lost due to birth non-response. Following this, one can conclude that around
10,000 individuals are absent from the June 2020 sample due to the Covid-related increase
in birth non-response. In December 2020, the number stood at approximately 15,000. The
(red) dashed line shows the sample size where WRI cases are excluded; it only accounts for
individuals that were interviewed in the current month. Assuming again that this restricted
sample would have stayed more or less the same without Covid, the drop in the dashed

line reflects Covid-induced birth and subsequent non-response. In both June and December,

16Moreover, the distinction may affect the choice of public-use versus master files. The variable that
identifies individuals with fully imputed labour market information is suppressed in the public-use files.
Public-use files users are therefore blind to changing patterns in subsequent non-response. They cannot,
for example, carry-out robustness checks to see if their findings are sensitive to the inclusion of individuals
whose labour market information was fully imputed.

"Indeed, note that birth and subsequent non-response rates are not available to researchers.

18Having a lower bound of 20 years of age also means that one can treat individuals who did not complete
high school as dropouts—a group for which non-response is typically a problem.

19Tt should be noted that additional restrictions must be imposed when constructing mini-panels for the
longitudinal analysis component of our paper. See Online Appendix A.1 for detail.



the decline was about 12,000. As such, the majority (if not all) of non-response cases for
these months can be attributed to failed birth interviews. The same holds true for the other
months of 2020.

Although of second order importance, the temporary rise in subsequent non-response should
nonetheless be of concern to researchers. To illustrate this point, we present in Figure [
WRI cases as a percentage of the full sample. Before the pandemic, it hovered in the 8-
9% band (except for July where it was slightly higher); after March 2021, it rose sharply,
reaching 14.1% in June, and only fell (and stayed) below 10% as of October 2020. To put
these numbers into perspective, over the March to September 2020 period, the labour market
information of one out of eight individuals was fully imputed. For the last two months of
our sample (i.e. December 2020 and January 2021), the subsequent non-response was back

to historical level with approximately one out of twelve being fully imputed.

Understanding whether birth non-response is mainly an incoming issue, or whether it persists
throughout the six-month window, is of particular relevance to LFS panel users.m Figure
plots the size of the incoming rotation over time. It has certainly dropped due to Covid,
especially between February and March, where it decreased by around 3,500 individuals. In
the following months, the decline, albeit more tempered, still ranged from 2,000 to 3,000.
Although substantive—given that the incoming sample stood at approximately 11,000 in
February 2020—these drops can only account for a minor part of the total decline in the
sample. This means that LFS surveyors have been, month after month, consistently unable
to make first contact with the same households since the advent of the Covid epidemic: a
subset of the households have been harder to reach not just in their incoming month, but

also in ensuing months, and as such, inducing a gradual increase in non-response rates.

If one imposes additional structure, i.e. assumes that the household non-response rates shown
in figure [1] also apply to individuals 20 to 64 year of age, one can quantify more precisely the
importance of each type of non-response. Columns (2) and (3) of table [l show how birth
and subsequent non-response have evolved over time, whereas columns (4) and (5), provide
a further breakdown of birth non-response by whether it occurs in the first month, i.e. in the
incoming rotation, or continues into the latter months of the six-month window Y Table
clearly shows that prior to the pandemic, birth non-response was of secondary importance as

compared to subsequent non-response. For example, in February 2020, birth and subsequent

20Tf non-response observed in Covid times is predominantly an incoming rotation issue, then researchers
that rely on two-month mini panels would be advised to use panels that use any two consecutive months, as
opposed to the first two months of the six-month window.

2In Online Appendix A.2 we provide a detailed description of how each type of non-response was con-
structed based on the identifying assumptions mentioned above.
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non-response were 3.8% and 8.1%, respectively, The striking feature is the rise in birth non-
response in the Covid era. The fact birth non-response for the incoming rotation only grew
by a few percentage points confirms our prior claim that first contact difficulties persist
throughout the six-month window. We carried out robustness checks where we repeated the
analysis of table [I] for less restrictive age groups and also using alternative approaches to
measuring the number of individuals that Statistics Canada attempts to contact each month.
In all cases, the main patterns discussed above nevertheless remain the same. See Online

Appendix A.2 for more information.

All in all, this analysis suggests that the major issue that has plagued the LFS has been a
surge in birth non-response, with first contact difficulties persisting beyond the first month

of the six-month window.

3.2 In-person interviews and individual characteristics

As discussed in section [2] there is a complementarity between the in-person and phone modes
of collection, where in-person interviewing is relied upon when there are difficulties with the
phone approach. As such, one might expect self-selection into the LFS in Covid times when
field operations were stopped. To investigate this possibility, we estimate the following linear

probability model:
Pr(inperson; = 1|X;) = ag + Xa, (1)

where inperson; is an indicator variable equal to one if individual ¢ was interviewed in-person
(and zero otherwise). Xj is a vector of socio-demographic characteristics comprising of binary

variables for gender, age and education groups, and regions of residence ]

Table [2 shows regression results for two different sample periods: March 2019 and July 2019.
The choice of 2019—the year prior to the pandemic—is to see whether the probability of
being interviewed in ‘normal’ times is correlated with socio-demographic characteristics. Two
different months are chosen to account for possible seasonal patterns (as is observed in the
non-response rate themselves)f‘r_g] Since the analysis of the previous subsection indicates that

high non-response rates are mostly accounted for by the falling number of birth interviews,

22More precisely, the vector includes a female binary variable, two age dummies (20 to 29 and 50 to
64), three highest educational attainment dummies (dropout, college, and bachelor degree and up), and five
regions of residence dummies (East, Quebec, Prairies, Alberta and British Columbia). The reference group
therefore consists of males that are 30 to 49 years of age with no more than a high school degree who living
in Ontario.

23July has historically been characterized by low response rates—suggesting difficulties with reaching
households could be reflected in the prevailing interview mode.
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we report regression results for this sub-population and for the incoming rotation (a further
subset), in addition to that of the full sample. Finally, the regressions are unweighted as we
are interested in estimating the share of in-person respondents within the sample itself (as

opposed to what would be done in the case of estimating population moments).

The findings of table [2| indicate that the interview mode is non-random, especially for birth
samples. The youngest and low-educated are more likely to be interviewed in person: in
March 2019, i.e. just one year before the onset of Covid, individuals 20 to 29 years of age
were 5.8 percentage point more likely to do an in-person interview than the 30 to 49 year
olds. For dropouts, the likelihood was 4.9 percentage point higher than for individuals whose
highest level of educational attainment was a high-school degree. In addition, the 50 to 64
year olds and those with a bachelor degree were less likely to be interviewed in person.
The results are overall similar for July 2019; the most notable difference is the greater
magnitude associated with the dropout coefficient for this month. There are also important
disparities across provinces, with Albertans being the most likely to be interviewed in person
(30 additional percentage points compared to Ontarians)—which would suggest distinctly

different operating procedures across provinces.

When focussing on the incoming rotation, the results are essentially the same; there is
again a clear pattern of in-person interview probabilities decreasing monotonically with age
and education. This similarity is at least in part due to the important overlap between
the two samples (all incoming interviews are by construction birth interviews), but this
confirms that a non-randomly selected sub-sample of the households need to be reached in
person very early on. Columns (1) and (4) of table [2] assess how the interview modes are
distributed across individuals in our full cross-section sample. The results are qualitatively
the same (and still statistically significant), but much more subdued. Indeed, most of the
in-person interviews are conducted in the incoming rotation, since this is in many cases used
as a mean to establish initial contact. As such, the variation in interview modes across
individuals is diluted when considering the full cross-section sample. Still, the differences

across characteristics are significant even when one considers this sample.

How are these patterns linked with Covid non-response issues? Recall that in-person in-
terviews play a crucial role in reaching households that cannot be contacted by phone. It
follows that the fact that this mode of interviewing is more likely to be used for low-educated
and younger individuals, suggests that they represent sub-populations that have been espe-
cially hard to reach due to shutdown policies accompanying the epidemic—and the resulting

suspension of in-person interviews. That interview modes are correlated with characteristics
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in the birth and the full cross-section samples indicates that non-response might introduce
biases in estimates based on incoming samples, but also those based on the full LF'S sample.
Crucially, the fact that youths and the low-educated seem to have been harder to reach is
not insignificant, since it has widely documented that these two groups have been—by far—
among the hardest hit in terms of labour-market outcomes (e.g., Lemieux et al. (2020)).
Obviously, the remaining question is to what extent can weights mitigate these issues, a

question what we will shortly address.

3.3 Baurth non-response and selection

Selection along socio-demographic characteristics. To further delve into potential selection
issues, we explore how Covid-19 has impacted the socio-demographic structure of the LFS.
Figure [0] presents unweighted sample shares by gender, age and education groups, and re-
gion of residence, for the incoming rotations over the January 2019 - January 2021 period.
Analyzing the structure of the incoming group is restrictive, but given the documented dif-
ficulties with first-contact interviews, it will provides a clear idea of how the sample of new
entrants (to the survey) changed with the advent of Covid-19. The focus is on unweighted
proportions as to examine the structure of the sample itself; when discussing the implications

for labour-market estimates, we make use of weights.

Figure [0] shows a break in March 2021 along age and education lines. Rotations that started
entering as of March 2021 are older and more educated than pre-Covid cohorts. The figure
shows a clear drop in the proportion of individuals 20 to 29 years of age (around 20% in
February vs. 16% in March), and a spike in the proportion of those aged 50 to 64 (36% vs.
40%). We see as well a decline in the proportions for the high-school and dropout groups,
and an increase in the tertiary education groups (college and university). These findings
are indicative of a significant and persistent impact of Covid-19 on response behaviours,
consistent with the idea that the suspension of in-person activities created difficulties with
initial contacts that have generated persistently high non-response rates. Moreover, the
break in the trends of the age and education sample shares mirror well the documented
facts of the previous section, which shows non-random assignment of interview modes along
these two dimensions—with in-person interviews being more likely for the youngest, and the

low-education individuals.

In figure (7, we look at the same unweighted shares but for the full sample (i.e. all rotations),
to assess how first contact difficulties propagate through the full sample. As one might have

expected, one can observe a gradual change in sample structure starting in March 2021; given
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the rotating panel of the design, it takes a few months to get a critical mass of new entrants.
This is especially visible along the age-group dimension: the 20 to 29 age group share has
been monotonically decreasing between March and June 2020, whereas the proportion of
those 50 to 64 has been following the opposite trajectory. 50 to 64-year-olds account for 40%
of the sample in June and onwards, vs. 36% in February (20 vs. 17% for youths). We observe
a similar pattern along the education dimension, with a progressive increase in the share of

highly-educated individuals in the sample.

We complement the graphical investigation with a regression analysis. It allows us to carry
out a series of statistical tests, and most importantly control for confounding factors. We do

so by estimating the following linear probability model
Pr(dfy = 1| X, diy™) = B + X7,8 + 90" + (479 x X )™, (2)

where df'} is an indicator variable equal to one if individual ¢ in year ¢ is observed in calendar
month m (see below) instead of February, i.e. the month just before the onset of the epidemic
in Canada; X is the vector of socio-demographic variables as defined in equation ; finally,
d79* is an indicator variable taking the value one if the individual is observed in year t = 2020.
We estimate equation for different sub-samples, i.e. using data for February and month

m € {March, May, July, September, November} in 2019 and 2020@ Hence,
Pr(d0 = 1|Xi2020) — Pr(dion = 11 Xi2019) = 75" + Xi20207" (3)

captures the effect of the Covid disruption on the probability of appearing in a Covid month
instead of February 2020, conditional on charaeteristicsﬂ More specifically, v"—the pa-
rameter vector of interest—measures how Covid-induced selection into non-response varies

across observable characteristics 2

Table3]shows the unweighted results for the incoming rotation. Consistent with the graphical

analysis (i.e. the unconditional findings) one still observes age and education profiles that

24Gaid differently, we first focus on February and March data for 2019 and 2020, and estimate the condi-
tional probability of appearing in March. We then use February and May data (again for 2019 and 2020)
to examine the conditional probability of being observed in May. The regressions where m represents the
months of July, September, and November are similarly defined. It should be noted that by using 2019 data
we can account for seasonal patterns in non-response.

25Unless a substantial change in the data collecting process was introduced between 2019 and 2020. To
the best of our knowledge, no such change have occurred.

26Tf the Covid effect on the probability of being observed was truly random, then y™=0 and ~§* < 0
(for m € {March, May, July, September, November}), with the negative intercept reflecting the increase in
non-response observed in the Covid-era.
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persist over time—even when controlling for confounding factors. These effects tend to be
economically and statistically significant. For instance, the probability 20 to 29 year olds
appear in the March incoming rotation (instead of February) is 4.7 percentage points (p.p.)
lower in 2020 than in 2019, relative to the 30 to 49 year old group. Even more than six
months after the initial shutdown, the youth age group has a 3.6 p.p. lower probability of
appearing in the September incoming rotation. If one focusses on the education dimension,
one sees that in Covid times, individuals with a bachelor (or more) are 3.5 p.p. more likely
to be a March entrant, and 3 p.p. more likely to be a September entrant (relative to the

high-school individuals).

To see how this incoming-rotation ‘entry’ selection pattern affects the structure of the full
LFS sample, we report in table |4 unweighted regressions results for all rotations. Again, the
estimates suggest a significant change in the structure of the sample along age and education
dimensions. Consistent with the idea that non-response is primarily a birth issue, the changes
in the sample structure come across gradually: there is no discernible effect for March, but
when focussing on later months, the full LF'S sample is clearly moving away from youths and
low-educated individuals. As of November—eight months after the start of the epidemic—
individuals 20 to 29 years of age are 2.8 p.p. less likely to be present in the sample than in
the previous year (in comparison to the prime-age reference group); even more striking is

the 4 p.p. lower probability of being part of the LFS sample for dropouts.

Finally, we complement the analysis by observing the impact of Covid on the structure of
balanced panels. In the online appendix, we show the results for ‘new-entrant’ mini panels
(i.e. individuals are observed in the first two month of the six-month window) and the ‘full-
rotation’ panels (i.e. individuals are observed in any two consecutive months). To make our
panel analysis comparable with the cross sectional one, the referenced month (i.e. February or
month m) is taken to be the first period of the mini-panel. For example, the panel equivalent
of being observed in March (as opposed to February), is the probability of being observed in
the March-April panel (as opposed to the February-March panel).

Unsurprisingly, the results for the new-entrant panel are similar to those of the incoming-
rotation, and this for two related reasons: first, the new entrant mini-panel is, by construc-
tion, very similar to the incoming rotation; in both cases, the person must be part of the
incoming rotation as of the referenced month. Second, the added panel restriction that the
individual be also observed in the following month is not overly restrictive in Covid times
since we know that subsequent non-response is not the driving force behind the important

rise in non-response. On the other hand, the results for ‘full-rotation’ panels are more in
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line with those of the full cross-sectional sample. This holds true because in both cases the
majority of individuals are not new to the sample. Having said this, one does lose a full
rotation with the panel approach as those that are in the outgoing rotation group as of the

first month of the panel cannot reappear in the second month.

Hence, due to the nature of the non-response and selection process—primarily driven by
the new LFS entrants—researchers might expect to face different types of selection patterns
depending on which panel design they decide to adopt. Essentially, researchers using new-
entrant panels should expect selection as of the beginning of the pandemic while those opting
for full-rotation panels should instead be worried about selection being an issue later in the
year, i.e. in the summer and fall months. Moreover, the full-rotation panel features clear and
persistent selection changes for the low educated and across the full age distribution, whereas,
in the new-entrant panel, the Covid effect is most apparent for the youths. Regarding the
latter aspect, the fact that the full-rotation panel selection pattern looks similar to that in
the cross-sectional sample might be good news: since the LFS weights construction is based
on cross-sectional information, we might expect these weights to mitigate selection issues in

the full-rotation panels. We come back to this question shortly.

Selection along employment and job characteristics. @ We now analyze how employment
and job characteristics correlate with non-response behaviours. A substantial literature has
documented important heterogeneity in the impact of Covid on labour-market outcomes
across industries and occupations in Canada and elsewhere (e.g., Lemieux et al. (2020);
Dingel & Neiman (2020); Baylis et al. (2020)). It is therefore key to investigate whether
workers who have been more exposed to the shock due to the characteristics of their job are

more or less likely to be selected in the LFS sample in March 2020 onward.

Note that here, we cannot repeat the exercise of analyzing the change in the sample structure
using 2019 and 2020 data (i.e. pre-Covid and Covid-era data). Indeed, job characteristics
have been directly impacted by Covid beyond any change due to non-response; the Covid-
led recession, for example, had a direct impact on the proportion individuals that are still
employed and the type of job they hold. One possibility would be to look for evidence of
selection based on the labour-market situation just before the epidemic—of those observed
during the pandemic. However, since we are mainly interested in understanding birth non-
response behaviours, this would require having retrospective information for new entrants in
the LFS. Since such information is rather limited in the LFS, we cannot easily follow this

approach.

We examine instead whether job characteristics that have been documented to be correlated
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with the intensity of Covid’s impact on individual outcomes are correlated with the mode
of interview before Covid (i.e. in 2019). In particular, we explore whether in-person respon-
dents differ systematically from remotely-interviewed individuals, conditional on their job
and socio-demographic characteristics. To do so, we estimate an augmented version of the
linear probability model shown in equation , a version that includes job characteristics
information as additional explanatory variables. The added variables consist of dummies
for the employment status, quartile of the individual weekly salary, length of job tenure,
and telework potential of the individual’s occupationm Considering individuals’ salary is
motivated by studies that have documented a higher adverse impact of Covid on low-earning
workers (e.g., Lemieux et al. (2020)) and accounting for job tenure is prompted by our previ-
ous results in Brochu et al. (2020) that suggest higher employment losses among low-tenure
workers (controlling for age). Finally, the introduction of a telework variable follows the
studies that have documented a more negative impact on individuals in occupation with low
telework potential (e.g., for the U.S.: Mongey et al. (2021); for Canada: Baylis et al. (2020)) |
It should be noted that we are interested in examining the presence of heterogeneity after
controlling for characteristics that are taken into account in the design of the LFS weights
(shortly discussed). As such, we also introduce in the regression a set of dummies for the

one-digit industry group of employed workers@

The results are shown in table [} There are striking differences along labour-market char-
acteristics. In March 2019, low-salaried and low job-tenured workers, and those working
in occupations with low potential for telework are more likely to be interviewed in person.
Once again, the magnitude of these differences is higher for birth and incoming-rotation
interviews than for the full sample (but the significance tends to be lower, probably due to
due smaller sample size). For instance, in birth and incoming interviews, individuals in the
second salary quartile are between 3 and 4 p.p. more likely to be interviewed in persons than
those in the third quartile. Strikingly, in person-interviews are between 6 and 7 p.p. more

likely for the employed with less than one year of tenure, than for the workers in more stable,

27For job tenure we include two binary variables: one for jobs with less than one year of tenure with the
same employer, and another for jobs with one to less than three years of tenure. It should be noted that
salary information is only collected of employees in the LFS.

28We rely on the telework feasibility indicator constructed by Deng et al. (2020), which is based on the
one developed by Dingel & Neiman (2020). It is adapted to the Canadian standard NOC 2011 occupation
classification system (from the U.S. SOC classification system) using the Social Analysis and Modelling
Division of Statistics Canada crosswalk. See Dingel & Neiman (2020) and Deng et al. (2020) for additional
detail.

29Tt should be noted that the LFS also gathers some job characteristics of the last job for those that
are out of work, but were employed in the last year. We are interested in job characteristics of those that
are employed as of the current month. As such, job characteristics only enter the equation as interaction
terms—interacted with employment.
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long-lasting jobs (i.e. three years of tenure and more). Similar patterns are observed in July.
Keep in mind that these regressions control for gender, age, education, provinces, and in-
dustries.[ﬂ As such, these differences reflect heterogeneity in response behaviour conditional
on the above-mentioned characteristics. Moreover, remember as well that the regressions

include industry controls.

Although we cannot directly test for changes in the structure of the LF'S sample along pre-
Covid job characteristics, we interpret these results as indirect evidence that such changes
have been occurring. The systematic differences in the profile of in-person respondents
before Covid, combined with the surge in non-response due to the suspension of this type of
interviews points to this direction. Furthermore, since there is heterogeneity within key socio-
demographic characteristics (gender, age, region) and within industry groups, we should
expect that the selection resulting from Covid has not been reflected in the adjustment of

LFS weights. The next section includes a discussion of this particular issue.

4 Implications for estimating the impact of Covid-19

4.1 Non-response and LFS weights

This section examines the extent to which the LF'S weights mitigate the potential selection
biases linked to the Covid-induced surge in non-response. Remember that the LFS impu-
tation procedure relies on information that has been collected during prior interviews. As
such, it can only be carried out for cases of subsequent non-response. Households for which
no first contact could be made are therefore dropped from the sample. The LFS weights are,

however, designed to account for this loss of information ]|

The LFS weighting methodology has a rich procedure. Key to our study is the “calibration”
step, which is performed to ensure that (i) the weighted sample is representative of the entire
population along key select dimensions including gender, age, and region of residence—but
not education; and (ii) it has a consistent structure across select labour-market dimensions
over time (i.e. across ensuing months). For the latter, the weights are calibrated to ensure
that individuals in the time ¢ sample who also had been observed in ¢ — 1, have similar

t — 1 labour-market characteristics as those of the full ¢ — 1 samplef?] The labour market

30In particular, the job-tenure pattern holds when controlling for age at a detailed level (i.e. with a set of
one-year age dummies).

31They will also account for non-random aspects of the LFS sampling design, i.e. that it follows a stratified
sample design.

32An example will best illustrate this point. Assume the LFS is calibrating the weights of the August
2020 sample. The LFS focusses on a sub-group of this sample—individuals that also had responded in the
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dimensions that are accounted for include: (i) employment, unemployment, and participation
(in aggregate and by sex/age groups); (ii) employment by industry (corresponding roughly
one-digit NAICS groups); (iii) employment in the public and the private sector.ﬁ

Since the weight calibration is performed to ensure that the sample is representative of
the Canadian population across gender, age, and region, one should not, when weights are
applied, be able to detect any changes as of March 2020 along these dimensions. Figures [§]
and [J] display weighted sample shares by gender, age, region and education, for the incoming
rotation and the full sample, respectively. As expected, there is no apparent break in trends
along the gender, age and region dimensions (in direct contrast to what was observed for
the unweighted shares shown figures @ and E[) This result stands when controlling for
confounding factors, i.e. when we run weighted regressions of equation for the full cross-
sectional sample (table @; the gender, age, and region effects that were clearly apparent in
the unweighted regressions essentially vanish with the application of weights. Therefore, the
weight adjustments have been mitigating the Covid-induced selection issues for some key

socio-demographic characteristics.

It is worth noting that (along these same three dimensions) the weights also seem to con-
siderably mitigate the selection issues for the panelsﬂ This might come as a bit of surprise
since the weights are adjusted and calibrated based on estimates for the entire LFS sample.
Indeed, constructing panels puts additional restrictions as it requires information on the same
individuals for subsequent months. But, as explained before, since the non-response issue
is mostly due to failed birth interviews (that persist through the six-month window) rather
than subsequent non-response, the structure of the full-rotation panel samples is similar to
that of the full cross-sectional sample (and the new entrant panel to that of the incoming
rotation). We see this as good news for researchers that rely on the longitudinal dimension
of the LFS.

However—Dby construction—the weights do not correct for other key dimensions, such as
education, for which we have documented significant selection. In table [0 the dropout coef-

ficients are still highly significant and have magnitude close to these found for the unweighted

prior month (i.e. July 2020)—and compares their labour market outcomes as of July 2020 to those of the
full July 2020 sample. The August 2020 weights are then adjusted/calibrated to account for any systematic
differences.

33Specifically, this calibration procedure consists in minimizing the distance between the “sub-weights”
(i.e. the weights obtained prior to the calibration) and the “calibrated” weights, under the constraint that
the sample produces consistent statistics across consecutive months, and population-share estimates for key
demographic characteristics that are consistent with those from the Census. See Statistics Canada (2017)
for a complete description of the weighting procedure.

34The tables of results can be found in the Online Appendix.
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regressions of table [l We should expect, therefore, that the weights have not been able to
correct for the heterogeneity in job characteristics. Indeed, the previous section presents ev-
idence suggesting heterogeneity in response behaviour conditional on socio-demographic and
job characteristics. It now remains to evaluate the implications of the Covid non-response

on labour-market estimates, which is the object of the next subsection.

4.2 The Covid-19 labour-market impact across LFS rotations

This section exploits the rotating-panel design of the LFS to examine the implications of se-
lection for estimating the impact of Covid on labour-market outcomes. Indeed, this rotating-
panel design, combined with the fact that non-response is mainly associated with birth non-
response (and, as such, with incoming rotations), provides variation in selection behaviours

that is uncorrelated with labour-market outcomes.

Essentially, our approach consists of comparing the impact of Covid on the individuals as-
signed to the rotations that entered the LFS before the onset of the epidemic in Canada
(i.e., before March 2020), with those assigned to the rotations entering the LFS afterwards.
Indeed, as we have argued so far, being assigned to a rotation that joined the LFS after the
onset of Covid (which we call a post-Covid rotation) is associated with a lower likelihood of
participating in the survey, presumably due to higher difficulties with reaching new entrants
given the suspension of in-person interviews. On the other hand, we should expect the rota-
tion assignment of individuals (for a given month) to be independent of their labour-market
outcomes. As such, the differences between the two groups after the beginning of Covid

should reflect different selection patterns.

Hence, the key idea behind our proposed approach is that the individuals assigned to pre-
Covid rotations have been exposed to a different selection rule than those assigned to post-
Covid rotations. Before Covid, in-person interviews were available; however, this mode of
interview was abruptly abandoned as of March 2020. As such, the post-Covid group have
a higher non-response rate due to an exogenous factor—the assignment to a given LFS

rotation.

Specifically, we propose the following model

E(yia|dy,, di9%°) = 6o + 01dy, + 62790 + 03(d], x di9™°), (4)

1,67 71,t

where y;; is an individual labour-market outcome and dj, is an indicator taking the value

one if the individual is assigned to a rotation that entered the LFS in March or a later

20



calendar month for year ¢. Finally,
one if the individual is observed in the year 2020. We estimate equation for different
sub-samples. We first estimate the model using March data for 2019 and 2020. We then

repeat the exercise for each of the four subsequent months, separately. It should be noted

d79? is again defined as an indicator variable that equals

that we only go up to July because this exercise requires having individuals that are part of
rotations that entered the LF'S prior to the pandemic. By July, only one rotation still meets

this criteria, i.e. the rotation which entered in February.

In particular,

E(yi,2020|d£2020 = 1) - E(yz',2019|d€,2019 = 1)_
[E(yi,2020|d;,2020 = 0) - E(?Jz‘,2019|d§,2019 = 0)} = 03 (5)

estimates the additional effect of Covid that is associated with being assigned to a post-Covid
rotation instead of a pre-Covid one. As argued before, the differences in labour-market out-
comes across these two groups should reflect heterogeneity coming from their different selec-
tion rules. Hence, we interpret the estimated coefficient of d3 as reflecting differences due to
selection induced by the Covid disruption. Notice that the difference-in-difference design of
our model allows us to control for seasonal effects that might generate differences across the
rotations independently of Covid (especially during the summer months, where non-response
is usually high). In what follows, we consider the ensuing binary dependent variables: em-
ployment, employment-at-work, and non-participation. Considering employment-at-work is
motivated by the dramatic decline in hours caused by Covid-19 in Canada (e.g., Lemieux

et al. (2020)), and by the historical increase in absences from work (e.g., Jones et al. (2020)).

Before proceeding, we discuss the limitations of this approach. The d, coefficient measures
the Covid impact on individuals that have been assigned to a LFS sample prior to the
pandemic. Yet, the group constituted by these individuals is clearly not exempted from
selection, including selection caused by birth non-response. To illustrate this point, consider
for example, two individuals (A and B) assigned to the rotation that entered the LFS in
February 2020. Say individual A can be reached in February but not in March, whereas B
cannot be reached in either month. Then as of March, individuals A and B are subsequent
and birth non-respondents, respectively. Since d, essentially estimates the impact on a group
where individuals like B are still present, it is still subject to a non-response bias (caused by
birth non-response) that might have been reinforced by Covid. Therefore, our approach is

not aimed at completely eliminating a potential non-response bias.

However, provided that (i) the bias is higher for individuals selected according to the post-
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Covid rule and that (ii) it has the same sign across rotations, the d3 coefficient indicates the
direction of the biasﬁ Assumption (i) is justified by the results of subsection , indicating
a clear increase in birth non-response driven by the rotations entering the LFS after the
start of Covid. The reader might be more skeptical about assumption (ii), but the results of
subsection [3.3]suggest that the selection patterns have essentially remained unchanged along
key observable characteristics, across all rotations. At the very least, the estimated value
of 03 should be seen as a test of the null hypothesis that selection due to the suspension of

in-person interviews is uncorrelated with the impact of Covid.

Table [7] shows OLS results for equation (). Columns (1) to (5) report the findings where
we impose d" = 0, i.e. it estimates the unconditional impact of Covid across all rotations,
for March to July, whereas columns (6) to (10) report the results for the full regression, i.e.,
it allows the impact to vary across individuals assigned to pre- and post-Covid rotations. In
the five months considered in panel A of table[7], the point estimate of 05 is always positive.
This indicates that the surveyed individuals who have been assigned to a post-Covid rotation
experienced lower (net) employment losses than individuals who have been assigned to prior
rotations. For the two first months following the onset of Covid, the impact is strong—3.5
p.-p. for March and 2.6 p.p. for April, as compared to the pre-Covid rotations—and significant
at the 1% level. The magnitude and significance gradually diminish over the year, which is
not surprising given that our treatment group is by construction less and less contaminated

by birth non-response Y]

The strong and gradually vanishing impact shown by table [7] suggests the presence of an
attenuation bias due to birth non-response when estimating the impact of Covid on employ-
ment. As such, using the entire cross-section sample might understate the negative impact of
the shock. This can be seen by comparing the coefficients of the restricted and unrestricted
models (columns (1) to (5) and (6) to (10), respectively). For all the months considered, the
estimated impact on the cross-sectional sample is less negative than for the group of pre-
Covid LFS entrants only. This is in line with the analysis of our previous sections arguing
that the individuals with the highest employment Covid risk (in terms of observable char-
acteristics) have been hardest to contact. The magnitude of these divergences is fortunately

moderate. In March, the unconditional cross-sectional employment impact is -3.1 p.p., vs.

35Implicitly, this requires that the bias due to subsequent non-response and imputation does not determine
the sign of the bias conditional on the rotation assignment. This is consistent with the fact that subsequent
non-response is a minor issue as compared to birth non-response in Covid times.

36Recall that 63 measures the impact on the group of individuals assigned to post-Covid rotations. In
this group, the share of individuals assigned to an incoming rotation is decreasing over time: in March, all
the observed post-Covid rotations belong to an incoming rotation; in April, one half (approximately) of the
individuals is in an incoming rotation, whereas the other half is in an ongoing rotation; etc.
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-3.7 p.p. for the restricted sample; for the other months, the difference is at most equal to

1.1 p.p.

We find similar results for the impact of Covid on the employment-at-work and non-participation
probabilities: these probabilities have been less negatively affected for individuals in the
March-onward rotations (panels B and C of table . The pattern is similar to that of the
employment estimates: the d3 coefficient has a high magnitude and significance in March
and April (less so for the employment-at-work probability than for participation, however),
but the impact gradually vanishes. Once again, the point estimates for the impact on the
cross-section suggest a lower impact than for individuals assigned to a pre-Covid rotation,
for all months. But, as for the employment estimates (table [7)), these differences remain

moderate.

We now run placebo regressions using 2018-2019 data, for both employment and non-
participation”| For these years, the employment and participation probabilities tend to
be lower for the LFS entrants of March-2019 and after. In March and April 2019, however,
there is no significant rotation effect. But for the late spring-early summer months, the effect
is substantial and significant. Here is a possible interpretation. Between 2018 and 2019, there
have been aggregate employment gains. These gains have been presumably heterogeneous in
the population, and one might expect that the most mobile groups have had the higher em-
ployment gains. Since mobility is relatively high in May-July, the most economically active
individuals might have been harder to reach, especially those in incoming rotations. In sum,
we might expect that when the economy is growing, birth non-response induces selection out
of the LFS for the high-employment probability individuals, especially around the summer.
The same reasoning can be made for participation, with the high-participation individuals

being less represented in the incoming rotations of the spring and summer.

Consistent with this mobility-based interpretation are our results for OLS estimations for
specific age groups (20 to 29 and 50 to 64 year olds). Conditional on belonging to these
two groups, there is no rotation effect for 2018-2019. In other words, the effect seems to
disappear when we condition on age. This suggests that the rotation difference for 2018-
2019 can be explained by an age-related pattern, with youths becoming harder to reach in
the spring-summer due to their higher mobility. Moreover, we find that for 2019-2020, the
post-Covid rotation effect is very weak for this groups. An explanation is that there has been
low heterogeneity in non-response behaviour within the youth group. The detailed results

are shown in the supplementary appendix.

37The placebo findings are available in the online appendix.
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However, for older workers, the picture depicting the Covid labour-market impact is strikingly
different as compared to youths. Table [§] shows the results for this age group, for 2019-2020.
In March and April 2020, the employment effect of Covid on 50-64—year-old workers assigned
to incoming rotations of March and afterwards is much lower than for the pre-Covid LFS
entrants. In March, the employment probability is 4.9 p.p. higher for the LFS entrants than
for the incumbent, and 4 p.p. higher in April. The picture looks similar for participation.
LFS entrants have been 3.1 p.p. less likely to not be in the labour force in March, and 3.3
p.p. in April. For this group, the point estimates of the coefficient of interest are much higher
than for the entire population (table 7). This suggests the presence of a substantial bias due
to selection for the 50-64 year-old individuals.

5 Discussion

This paper shows that the increase in non-response due to the propagation of Covid-19
in Canada, coupled with social distancing policies, has not been random. It appears that
subpopulations that were vulnerable to the Covid economic shock have been harder to reach
since the onset of the pandemic. Most of the increase in non-response, and the associated
selection of individuals into LF'S samples, can be plausibly attributed to the interruption of

in-person interviews.

Since those most exposed to the Covid economic shock have also been the hardest to reach,
we might expect estimates of the labour-market impact of Covid to underestimate the true
decline in employment and participation. Consistent with this premise is our analysis showing
that individuals assigned to a pre-Covid rotation—the ones that entered the LFS prior to
March 2020—were less affected than those assigned to a post-Covid rotation. Provided
that the assignment of individuals to rotations (when conditioning on a survey month) is
uncorrelated with labour-market outcomes, we interpret such differential impacts as reflecting
selection. It should be noted that by construction, the LF'S weights do not mitigate selection
along some key dimensions such as education, the length of job tenure, and the telework

potential of occupations.

All-in-all; the results suggest that existing studies might have underestimated the negative
labour-market impact of Covid-19. However, the rise in non-response, although large by LFS
standards, must be taken into perspective. Given that pre-Covid non-response rates were in
the low teens, a resultant non-response rate of 30% more than rivals the rates observed in
most surveys—even by pre-Covid standards. As such, we believe that the LFS should still be

seen as being a reliable data source for analyzing the economy in Covid times, especially given
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its relatively high frequency and timely availability to researchers. Furthermore, there are no
indications that the non-response issue has dramatic implications for the Covid-19 labour-
market narrative that has been proposed, at least when it comes to looking at aggregate
outcomes. The differences that we find between individuals assigned to pre- and post-Covid
rotations are statistically significant but of moderate magnitude. It might be that there is a
substantial bias associated with the estimates when using the full sample (where both groups
are present), or it might be that the true bias is modest in size. We lean towards the latter
interpretation, as in-person interviews represented a low share of total interviews before the

pandemic.

Another reason to be optimistic is that the structure of the panels in terms of socio-
demographic characteristics has remained similar to that of cross-section samples during
Covid times. Researchers conducting longitudinal analysis should, therefore, feel reassured
that panels have not been contaminated by selection issues that were more severe than for
the cross-section samples. Essentially, this is because of the relatively low importance of
subsequent non-response, which, if high, would have generated excess panel attrition. The
low subsequent non-response rates should also alleviate concerns with using public-use files
instead of the restrictive-access master files. Indeed, the public-use files have no data impu-
tation information, as opposed to the master files. At first glance, one should expect that
access to this information is required for producing robust analysis using Covid-time data.
However, the fact that birth rather than subsequent non-response is the main issue tends to
mitigate the relative benefits of master files in this regard. Our previous work showing minor
differences in key labour-market statistics across LFS samples with and without individuals

with fully imputed information (Brochu et al. (2020)) points in the same direction.

The following caveat must be highlighted. Estimates based on specific sub-samples might
need to be interpreted with care since the selection issue is presumably non-uniform across
individuals—particularly for the months immediately following the first (i.e. spring 2020)
lockdown. For instance, the incoming rotations are more affected by the Covid-induced
selection issue. Hence, it might be preferable to rely on full-rotation panels than on the
new-entrant panels for conducting longitudinal analysis. Moreover, our regressions suggest
substantial differences in the Covid impact between rotations, when focussing on the oldest
workers. But in the end, when these results are put in perspective with the tremendous

disruption caused by Covid in Canada, one can argue that these issues are moderate.

It would be informative to reassess the economic impact of Covid when the relevant ad-

ministrative datasets will be available to researchers. Through a comparison of survey

25



and administrative data estimates, one could more precisely evaluate the extent to which a
pandemic-driven disruption such as the one currently experienced—and which might eventu-
ally reoccur—affects the collection of survey data. Moreover, this could shed additional light
on the heterogeneity of the Covid impact. As suggested by our analysis, the magnitude of
the non-response bias might vary across subgroups. As such, the true distributional impact
of Covid might not be fully revealed by survey datasets. A remaining question is to what
extent the imputation procedure has been mitigating the subsequent non-response issue.
Even if subsequent non-response rates have been modest compared to birth non-response, it
might be important to assess its impact given the unprecedented surge in the prevalence of
‘unusual’ labour force status, such as the absences from work or temporary unemployment.

Again, having access to administrative data will eventually shed light on this question.

Our results further suggest that future work could be done to improve weight adjustment
to deal with non-response issues. More generally, it might be important to improve our
strategies for dealing with the secular increase in non-response rates observed in Canada and
elsewhere, especially since the nature of jobs might be evolving quickly—due to technological
changes and the expected increased prevalence of telework compared to pre-Covid times—
and introduce additional heterogeneity in labour market outcomes. This might prove useful
for facing future disruptive events having highly heterogeneous labour-market impacts as

was the case for the Covid shock.
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Figure 1: Monthly household non-response rates (%). Source: LFS - Statistics Canada; IPUMS-
CPS (https://cps.ipums.org/cps/covidl9.shtml, accessed June 10, 2021). Share of households
in the monthly LFS with no available information. The red vertical line indicates February 2020.
The LFS data includes all LF'S households in the ten Canadian provinces.
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Figure 2: Proportions of interviews by mode of collection (%). Source: LFS and authors’
calculations. Monthly cross-sectional samples of individuals aged 20 to 64, excluding full-
time members of the armed forces and those living in the territories.
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Figure 3: Sample size with and without whole record imputation (WRI). Source: LFS and authors’
calculations. The blue plain line shows the total number of individuals in the full sample and the
red dash line shows the number of individuals after excluding those for whom LF'S information has
been fully imputed. The red vertical line indicates February 2020. Monthly cross-sectional samples
of individuals aged 20 to 64, excluding full-time members of the armed forces and those living in
the territories.
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Figure 4: Whole record imputation (WRI) cases as a percentage of the full sample. Source: LFS
and authors’ calculations. The red vertical line indicates February 2020. Monthly cross-sectional
samples of individuals aged 20 to 64, excluding full-time members of the armed forces and those
living in the territories.
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Figure 5: Sample size of incoming rotations. Source: LFS and authors’ calculations. Number of
individuals in the incoming rotation group in each month of the LFS. The red vertical line indicates
February 2020. Monthly cross-sectional samples of individuals aged 20 to 64, excluding full-time
members of the armed forces and those living in the territories.
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Table 1: Non-response rates (%), by type

Response Birth Subsequent Birth non-response

non-response non-response Incoming  Other

(1) (2) (3) (4) (5)

2019 Jan 87.8 3.9 8.3 1.8 2.1
Feb 88.0 4.0 8.0 1.7 2.3

Mar 87.8 3.8 8.4 14 2.4

Apr 88.4 3.5 8.1 1.4 2.1
May 87.8 3.2 9.0 1.4 1.8

Jun 88.2 2.9 8.9 1.3 1.6

Jul 87.3 3.2 9.5 2.0 1.2

Aug 88.9 2.7 8.4 1.8 0.9

Sep 89.4 3.0 7.6 1.7 1.4

Oct 89.3 2.8 7.9 1.6 1.2

Nov 89.1 2.9 8.0 1.2 1.6

Dec 88.4 3.2 8.4 1.2 2.0
2020 Jan 88.9 3.3 7.8 1.2 2.1
Feb 88.1 3.8 8.1 1.5 2.3

Mar 77.9 11.7 10.4 6.8 4.9

Apr 76.5 13.5 10.0 5.6 7.9

May 73.5 14.7 11.8 4.3 10.4

Jun 71.8 16.4 11.8 3.8 12.6

Jul 70.5 19.4 10.1 4.4 15.0

Aug 70.5 20.5 9.0 4.8 15.7

Sep 69.3 19.8 10.9 4.9 14.9

Oct 70.0 21.9 8.1 5.6 16.3

Nov 69.9 22.7 7.4 5.6 17.1

Dec 69.2 23.9 6.9 5.7 18.3
2021 Jan 70.2 23.4 6.4 5.0 18.4

Notes: Monthly individual non-response rates (%) by type. Source: Statistics Canada and authors’ own
calculations (see online appendix for details about the calculation of rates in columns (2) to (5)). Sample for
individuals aged 20 to 64, excluding full-time members of the armed forces and those living in the territories.
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Table 2: Probability of being interviewed in person, 2019, unweighted

March July
all birth incoming all birth incoming
only only only only
(1) (2) (3) (4) (5) (6)
Female -0.001 0.002 0.000 -0.003 -0.006 -0.012
(0.002) (0.008) (0.008) (0.002) (0.009) (0.009)
20 to 29 0.014***  0.058***  0.056™** 0.017*  0.063***  0.067**
(0.003) (0.011) (0.012) (0.003) (0.012) (0.013)
50 to 64 -0.011*  -0.057*** -0.057*** -0.015™*  -0.049***  -0.042***
(0.002) (0.019) (0.010) (0.002) (0.012) (0.010)
Dropout 0.027**  0.049"*  0.054*** 0.031***  0.080***  0.075***
(0.004) (0.015) (0.016) (0.004) (0.016) (0.017)
College -0.005* -0.019* -0.020* -0.001 0.005 0.001
(0.002) (0.010) (0.011) (0.003) (0.011) (0.012)
Bachelor degree + -0.010*** -0.028"*  -0.025** -0.007*  -0.024*  -0.033**
(0.003) (0.011) (0.012) (0.003) (0.012) (0.013)
East 0.037**  0.196™*  0.209*** 0.021***  0.110***  0.109***
(0.003) (0.013) (0.013) (0.003) (0.014) (0.014)
Quebec -0.012=*  -0.020 -0.011 -0.021**  -0.093*** -0.119***
(0.003) (0.013) (0.013) (0.003) (0.013) (0.014)
Prairies 0.041**  0.223**  0.232*** 0.023***  0.101**  0.110***
(0.003) (0.013) (0.013) (0.003) (0.013) (0.014)
Alberta 0.048**  0.297**  0.319"** 0.013**  0.132***  0.132***
(0.003) (0.014) (0.015) (0.004) (0.016) (0.017)
British Columbia  0.038*  0.200***  0.215"** 0.019**  0.086***  0.092***
(0.003) (0.014) (0.015) (0.003) (0.014) (0.016)
adj. R? 0.011 0.074 0.081 0.006 0.034 0.040
N 71,523 12,844 11,387 71,149 12,702 10,779

Notes: Probability of being interviewed in person conditional on individual characteristics. The full sample
(i.e. all) covers individuals aged 20 to 64, excluding full-time members of the armed forces and those living
in the territories. The samples in columns (2) and (5) are further restricted to only include individuals who
are birth interviews. The samples in columns (3) and (6) are further restricted to only include individuals
who are in the first month of the six-month window (i.e. incoming rotation). The dependent variable is an
indicator for whether the household the individuals belong to was interviewed in person. All regressions

are unweighted and include a constant. Standard errors are shown in parentheses.
significance at 10%; ** significance at 5%;

KKk

significance at 1%.
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Table 3: Probability of being observed in select months, 2019-2020, incoming rotation, un-
weighted

Mar May Jul Sep Nov
(1) (2) (3) (4) (5)

Post COVID-19  -0.122** -0.069*** -0.091*** -0.096"** -0.123"**
(0.015)  (0.015)  (0.015)  (0.015)  (0.015)

Interaction terms with post COVID-19 indicator:

Female 0.003  0.00l  -0.000  -0.001  -0.000
(0.010)  (0.010)  (0.010)  (0.010)  (0.010)
20 to 29 -0.0477*  -0.033**  -0.044™* -0.036"*  -0.021
(0.014)  (0.014)  (0.014)  (0.014)  (0.014)
50 to 64 0.013  0.006  0.016  0.002  0.025*
(0.011)  (0.011)  (0.011)  (0.011)  (0.011)
Dropout 0.035*  -0.023  -0.020  -0.013  -0.019
(0.019)  (0.019)  (0.019)  (0.019)  (0.019)
College 0.033**  0.026™  0.007  0.030®  0.023*

(0.013)  (0.012)  (0.013)  (0.013)  (0.013)
Bachelor degree +  0.035  0.027**  0.028"*  0.010  0.020
(0.014)  (0.014)  (0.014)  (0.014)  (0.014)

East -0.008  0.001  0.051**  0.038"  0.068***
(0.016)  (0.015)  (0.015)  (0.015)  (0.015)
Quebec 0.028*  0.021  0.053**  0.035  0.044***
(0.015)  (0.015)  (0.015)  (0.015)  (0.015)
Prairies 0.020  0.019  0.076"*  0.038"*  0.055***
(0.016)  (0.015)  (0.015)  (0.016)  (0.016)
Alberta 0.006  -0.022  0.051*** 0.096**  0.018

(0.017)  (0.017)  (0.018)  (0.018)  (0.018)
British Columbia ~ -0.034** -0.042***  0.019  -0.000  -0.002
(0.017)  (0.017)  (0.017)  (0.017)  (0.017)

adj. R? 0.013 0.005 0.006 0.006 0.009
N 40,865 42,369 41,873 41,583 41,446

Notes: Probability of being observed in select months, conditional on individual characteristics. Sample
for individuals aged 20 to 64 in the incoming rotation, excluding full-time members of the armed forces
and those living in the territories, and observed in February and a select month of 2019 and 2020. The
select month is identified at the top of each column. The dependent variable is an indicator for whether the
individual is observed in the select month. All regressions are unweighted and include the sociodemographic
characteristics on their own and a constant. Standard errors are shown in parentheses. * denotes statistical
significance at 10%; ** significance at 5%; *** significance at 1%.
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Table 4: Probability of being observed in select months, 2019-2020, all rotations, unweighted

Mar May Jul Sep Nov
(1) (2) (3) (4) (5)

Post COVID-19  -0.019"* -0.035*** -0.054*** -0.059"** -0.064"**
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)

Interaction terms with post COVID-19 indicator:

Female 0.002  -0.002  -0.002  -0.002  -0.001
(0.004)  (0.004)  (0.004)  (0.004)  (0.004)
20 to 29 -0.006  -0.014*  -0.028"** -0.032"* -0.028"**
(0.005)  (0.005)  (0.005)  (0.005)  (0.005)
50 to 64 0.005  0.014** 0.021*** 0.019**  0.021***
(0.004)  (0.004)  (0.004)  (0.004)  (0.004)
Dropout 0.011  -0.019** -0.033*** -0.035"* -0.040***
(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
College 0.001  -0.003  -0.006  -0.006 -0.011*

(0.005) (0.005) (0.005) (0.005) (0.005)
Bachelor degree + 0.004 0.004 0.006 0.004 -0.001
(0.005) (0.005) (0.005) (0.005) (0.005)

East -0.002  0.001  0.018** 0.018**  0.027***
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)
Quebec 0.003  0.007  0.015* 0.016"*  0.015*
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)
Prairies 0.001  0.011*  0.034** 0.051**  0.058"**
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)
Alberta 0.010  0.017*  0.017*  0.051**  0.070***

(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
British Columbia ~ -0.009  -0.020"** -0.013**  -0.007  -0.001
(0.007)  (0.007)  (0.007)  (0.007)  (0.007)

adj. R? 0.000 0.001 0.003 0.003 0.004
N 278,100 274,042 270,784 269,746 267,969

Notes: Probability of being observed in select months, conditional on individual characteristics. Sample for
individuals aged 20 to 64 in all rotations, excluding full-time members of the armed forces and those living in
the territories, and observed in February and a select month of 2019 and 2020. The select month is identified
at the top of each column. The dependent variable is an indicator for whether the individual is observed in
the select month. All regressions are unweighted and include the sociodemographic characteristics on their
own and a constant. Standard errors are shown in parentheses. * denotes statistical significance at 10%; **
significance at 5%; *** significance at 1%.
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Table 5: Probability of being interviewed in person, job characteristics, 2019, unweighted

March July
all birth  incoming all birth  incoming
only only only only
(1) (2) (3) (4) () (6)
Self-employed -0.022"*  -0.053"**  -0.058"** -0.017***  -0.057*  -0.056™**
(0.004) (0.019) (0.020) (0.005) (0.020) (0.021)
Employee -0.026™*  -0.062***  -0.058*** -0.024™  -0.052***  -0.052***
(0.004) (0.017) (0.018) (0.004) (0.018) (0.020)
Employee X earnings quartile 1 0.008** 0.021 0.027* 0.000 -0.008 -0.010
(0.004) (0.015) (0.016) (0.004) (0.016) (0.018)
Employee X earnings quartile 2 0.009**  0.032**  0.036** 0.003 -0.015 -0.012
(0.003) (0.014) (0.015) (0.004) (0.015) (0.016)
Employee X earnings quartile 4 -0.002 -0.013 -0.003 -0.004  -0.045**  -0.048***
(0.003) (0.015) (0.016) (0.004) (0.016) (0.017)
Employed X tenure (1 to 11 months)  0.022**  0.067**  0.062*** 0.023**  0.077**  0.074***
(0.003) (0.014) (0.014) (0.003) (0.014) (0.015)
Employed X tenure (12 to 35 months) 0.015***  0.051***  0.055*** 0.007*  0.029* 0.015
(0.003) (0.012) (0.013) (0.003) (0.013) (0.015)
Employed X telework -0.008**  -0.020* -0.020* -0.008*  -0.015 -0.013
(0.003) (0.011) (0.011) (0.003) (0.012) (0.013)
Sociodemographic char. controls Yes Yes Yes Yes Yes Yes
Employed X industry controls Yes Yes Yes Yes Yes Yes
adj. R? 71,523 12,844 11,387 71,149 12,702 10,779
N 0.014 0.082 0.089 0.008 0.040 0.045

Notes: Probability of being interviewed in person conditional on individual and job characteristics. The full sample (i.e. columns (1) and (4)) covers
individuals aged 20 to 64 in all rotations, excluding full-time members of the armed forces and those living in the territories. The samples in columns
(2) and (5) are further restricted to only include individuals who are birth interviews. The samples in columns (3) and (6) are further restricted to only
include individuals who are in the first month of the six-month window (i.e. incoming rotation). The dependent variable is an indicator for whether
the household the individuals belong to was interviewed in-person. All regressions are unweighted and include the sociodemographic characteristics on
their own and a constant. Standard errors are shown in parentheses. * denotes statistical significance at 10%; ** significance at 5%; *** significance
at 1%.



Table 6: Probability of being observed in select months, 2019-2020, all rotations, weighted

Mar May Jul Sep Nov
(1) (2) (3) (4) (5)

Post COVID-19 0.004 0005 0008  0.008  0.006
(0.008)  (0.008)  (0.008)  (0.008)  (0.008)

Interaction terms with post COVID-19 indicator:

Female 0.000  -0.000  -0.000  -0.000  -0.001
(0.005) (0.005)  (0.005)  (0.005)  (0.005)
20 to 29 -0.001  -0.001  -0.001  -0.003  -0.002
(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
50 to 64 -0.000  0.002  0.007  0.004  0.005
(0.006) (0.006)  (0.006)  (0.006)  (0.006)
Dropout -0.009  -0.019* -0.030"* -0.028"** -0.033**
(0.010)  (0.010)  (0.010)  (0.010)  (0.011)
College -0.005 -0.011* -0.018"* -0.019** -0.015*

(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
Bachelor degree + -0.004  -0.004 -0.010 -0.009 -0.008
(0.007) (0.007)  (0.007)  (0.007)  (0.007)

East 0.000  0.001  0.001  0.001  0.001
(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
Quebec 0.001  0.002 0003  0.003  0.003
(0.007) (0.008)  (0.008)  (0.008)  (0.008)
Prairies -0.000  0.000  0.000  0.000  0.000
(0.007)  (0.007)  (0.007)  (0.007)  (0.007)
Alberta 0.000  0.001  0.001  0.001  0.001

(0.008)  (0.008)  (0.009)  (0.009)  (0.009)
British Columbia ~ -0.000  -0.000  -0.000  -0.000  -0.000
(0.008)  (0.008)  (0.008)  (0.009)  (0.009)

adj. R? -0.000  -0.000 0.000 0.000 0.000
N 278,100 274,042 270,784 269,746 267,969

Notes: Probability of being observed in select months, conditional on individual characteristics. Sample for
individuals aged 20 to 64 in all rotations, excluding full-time members of the armed forces and those living in
the territories, and observed in February and a select month of 2019 and 2020. The select month is identified
at the top of each column. The dependent variable is an indicator for whether the individual is observed
in the select month. All regressions are weighted and include the sociodemographic characteristics on their
own and a constant. Standard errors are shown in parentheses. * denotes statistical significance at 10%; **
significance at 5%; *** significance at 1%.
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Table 7: Pandemic impact across pre- and post-Covid entrants, 2019-2020, weighted

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mar Apr May Jun Jul Mar Apr May Jun Jul
Panel A: Probability of employment

2020 -0.031**  -0.110* -0.102"* -0.066** -0.047** -0.037* -0.119*** -0.109** -0.074"* -0.056**"
(0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.004)  (0.005)  (0.005)  (0.008)

ar -0.009  -0.003  -0.003  -0.007  -0.010"
(0.006)  (0.005)  (0.004)  (0.004)  (0.006)

d2020 x g 0.035**  0.026**  0.015*  0.012*  0.011
(0.010)  (0.008)  (0.007)  (0.007)  (0.009)

N 136,975 134,322 132,917 131,860 129,659 136,975 134,322 132,917 131,860 129,659

Panel B: Probability of employment at work

2020 -0.093***  -0.188** -0.154" -0.097*** -0.052* -0.097°* -0.194*** -0.161** -0.103"* -0.052***
(0.004)  (0.004)  (0.004)  (0.004)  (0.004)  (0.004)  (0.004)  (0.005)  (0.006)  (0.009)

ar -0.012*  -0.004  -0.004  -0.002  -0.005
(0.007)  (0.005)  (0.005)  (0.005)  (0.006)

d2020 x gr 0.026  0.017**  0.013*  0.009  -0.000
(0.011)  (0.008)  (0.007)  (0.007)  (0.010)

N 136,975 134,322 132,917 131,860 129,659 136,975 134,322 132,917 131,860 129,659

Panel C: Probability of non-participation

2020 0.016"*  0.059*  0.042* 0.016**  0.007*  0.020"* 0.068"* 0.051** 0.022"*  0.014**
(0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.004)  (0.004)  (0.005)  (0.007)

dr 0.010  0.005  0.003  0.005  0.005
(0.006)  (0.004)  (0.004)  (0.004)  (0.005)

d2020 x gr -0.025** -0.028"* -0.017°*  -0.008  -0.009
(0.009)  (0.007)  (0.006)  (0.006)  (0.008)

N 136,975 134,322 132,917 131,860 129,659 136,975 134,322 132,917 131,860 129,659

Notes: estimates of the impact of Covid-19 on select labour-market outcomes. Sample for individuals aged 20 to 64 in all rotations, excluding full-time
members of the armed forces and those living in the territories, and observed in a specific calendar month, in 2019 and 2020. The relevant month
is identified at the top of each column. Columns (1) to (5) report estimates of the model with the restriction 6; = d3 = 0 i.e., estimates for the
unconditional impact across all rotations. Columns (6) to (10) report estimates for the full model i.e., it allows the impact to vary across the
individuals assigned to pre- and post-Covid incoming rotations. All regressions are weighted and include a constant. Robust (Huber-White) standard
errors are shown in parentheses. * denotes statistical significance at 10%; ** significance at 5%; *** significance at 1%.
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Table 8: Pandemic impact across pre- and post-Covid entrants, 2019-2020, 50-64 years-old, weighted

(1) (2) (3) (4) (3) (6) (7) (8) (9) (10)
Mar Apr May Jun Jul Mar Apr May Jun Jul
Panel A: Probability of employment

2020 -0.018**  -0.077** -0.064™ -0.043*** -0.031** -0.026"* -0.091*** -0.068"* -0.037""* -0.054***
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.007)  (0.008)  (0.010)  (0.014)

r 0.003  0.010 0011 0012  -0.006
(0.011)  (0.008)  (0.008)  (0.008)  (0.010)

42019 x g 0.049**  0.040"*  0.008  -0.009  0.028*
(0.017)  (0.013)  (0.012)  (0.012)  (0.015)

N 51,307 50,694 50425 50,631 50,209 51,307 50,694 50,425 50,631 50,209

Panel B: Probability of non-participation

2020 0.012°  0.039"* 0.028*** 0.013*  0.006  0.018*** 0.051** 0.035"*  0.012  0.024*
(0.005)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.007)  (0.008)  (0.009)  (0.013)

dr 0.002  -0.009  -0.007  -0.005  0.005
(0.010)  (0.008)  (0.007)  (0.008)  (0.010)

42019 x gr -0.031*  -0.033**  -0.013  0.001  -0.022
(0.016)  (0.012)  (0.011)  (0.012)  (0.014)

N 51,307 50,694 50425 50,631 50,209 51,307 50,694 50,425 50,631 50,209

Notes: estimates of the impact of Covid-19 on select labour-market outcomes. Sample for individuals aged 50 to 64 in all rotations, excluding full-time
members of the armed forces and those living in the territories, and observed in a specific calendar month, in 2019 and 2020. The relevant month
is identified at the top of each column. Columns (1) to (5) report estimates of the model with the restriction 6; = d3 = 0 i.e., estimates for the
unconditional impact across all rotation. Columns (6) to (10) report estimates for the full model i.e., it allows the impact to vary across the
individuals assigned to pre- and post-Covid incoming rotations. All regressions are weighted and include a constant. Robust (Huber-White) standard
errors are shown in parentheses. * denotes statistical significance at 10%; ** significance at 5%; *** significance at 1%.
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