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Abstract

This paper establishes that the rise in employer-provided training due to technological change
has dampened the college wage premium. Using unique survey micro-data, I show that high-
technology firms provide more training overall, but the gap in training participation between
high- and low-skill workers is smaller within these firms. To understand the aggregate impli-
cations of these patterns, I build a quantitative model of the labor market with endogenous
technology and training investments. In a counterfactual exercise, I find that the increase in the
college wage premium would be 63 percent greater if training costs remained constant between
1980 and the early 2000s.
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1 Introduction

The proliferation of new information-and-communications technologies (ICT) beginning in the 1980s
coincided with a rise in both the relative supply and price of post-secondary educated labor. The
starkest changes occurred in the United States, where the college wage premium more-than-doubled
and the share of post-secondary educated workers increased by 91 percent over this period. Other
OECD countries experienced a similar fate, although typically to a lesser degree. For example,
in Canada, the college wage premium increased by 22 percent between 1980 and 20001, while the
share of post-secondary educated (henceforth, high-skill) workers increased by 67 percent. In this
paper, I document a new channel connecting technological change to the college wage premium:
employer-provided training. In particular, I empirically document that new technologies often
require additional training, which itself generates an earnings premium independent of education. I
then quantitatively show that increased training participation among low-skill workers has produced
a dampening effect on the college wage premium.

Existing studies of the college wage premium, including Bound and Johnson (1992), Katz and
Murphy (1992), and Krusell et al. (2000), often highlight the effect of new technologies on the
productivity of high-skill workers and, hence, how skill-biased technological change (SBTC) raises
the college wage premium through the response of labor demand. The main empirical contribution of
this paper is to document a related link between technology and training provision at the workplace-
level. Specifically, I use unique matched employer-employee survey data from Canada to establish
three facts. First, I show that technology-intensive (henceforth, high-technology) firms are relatively
more productive, employ more high-skill workers, and provide more training than low-technology
firms. That is, there exists a positive relationship between work-related training and technological
intensity in the workplace. Second, I demonstrate that training generates a significant earnings
premium, conditional on various worker and firm characteristics. Third, I show that the difference
in training participation rates between high- and low-skill workers is smaller within high-technology
firms. As technological change intensifies, the relative training participation rate among low-skill
workers accelerates which, in turn, raises the average wage among this group and reduces the
college wage premium. I provide further evidence of this mechanism by estimating a college wage
premium separately for trained and untrained workers within high-technology firms and show that
the premium is indeed smaller for the trained group.

Together, Facts 1 and 2 suggest that high-skill workers disproportionately benefit from techno-
logical change: not only does the return to their formal credentials increase, but they are also more
likely to work for high-technology employers and reap the benefits of training over their working

1See, for example, Krueger et al. (2010). In related work, Boudarbat, Lemieux, and Riddell (2010) document
an increase of 25 percent for the university-to-high-school graduate premium among males between 1980 and 2005
using Canadian Census data. On the other hand, Kryvtsov and Ueberfeldt (2009) find no change in the premium
between 1980 and 2000 when comparing males with at least a bachelor’s degree to males without any post-secondary
education using Canadian Survey of Consumer Finances data.
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career. When combined with Fact 3, however, the opposite story begins to emerge. Therefore, to
better understand the aggregate implications of these facts, I build a quantitative model of the labor
market, which embeds endogenous investments in education (Flinn and Mullins, 2015; Shephard and
Sidibe, 2019) for workers, and in training (Moen and Rosén, 2004; Flinn, Gemici, and Laufer, 2017)
and technologies (Shi, 2002) for firms, into a general equilibrium directed search model. Assuming
that the benefits of training are fully match-specific, search frictions allow workers to extract some
of the rents from training.2 To ensure interior solutions for the shares of high-skill, trained, and
high-technology employees as in the data, I allow the cost functions for technology investment and
training provision to depend on the education level of a worker. With directed search, solving the
model remains tractable: given a set of taxes to finance the economy’s unemployment insurance
program, the worker and firm problems can be solved independently of the distribution of individ-
uals across states.3 The model generates an exact decomposition of the college wage premium into
three channels: (1) the relative supply high-skill workers, (2) the relative complementarity between
high-skill labor and technology, and (3) the training participation gap between high- and low-skill
workers.

I calibrate the model starting with the final steady state and work backwards in time. I pool
repeated cross-sections from the Canadian micro-data between 1999 and 2005 to obtain a set of 11
moments to exactly identify 11 parameters in the final steady state. To identify and estimate the
parameters governing the initial steady state, I impose an additional restriction. Specifically, I sort
the set of 11 parameters into a group of 7 parameters, which are held fixed across the steady states,
and a group of 4 parameters, which vary across the steady states. The first group of parameters
governs the productivity of education and training, the cost of posting vacancies, and the setup cost
associated with the high technology. The second group of parameters governs the complementarity
between technology and high-skill labor, the costs of training, and the cost of higher education;
their values are chosen to match the increase in the college wage premium between 1980 and 2000,
the share of training participants in 1980, and the share high-skill workers in 1980, respectively.

I use the calibrated model as a laboratory to decompose the college wage premium and, ulti-
mately, measure the effect of training on the observed rise in the college wage premium for Canada
between 1980 and the early 2000s. Consistent with existing quantitative work, I find that technolog-
ical change is the primary driver of the college wage premium and explains 60 percent of its absolute
variation over this period. Increased training participation explains a meaningful 28 percent of the
absolute variation and, in fact, dampens the premium. In particular, I show that, if training costs
were held fixed between the 1980 and the early 2000s, the increase in the college wage premium
would have been 63 percent greater.4

2Put differently, in a frictionless environment with fully match-specific training, workers would not receive any
premium from training, which is inconsistent with the data.

3See, also, Menzio and Shi (2010, 2011).
4In terms of its level, the college wage premium under fixed training costs would be 16 percent larger than its

1980 level or 6 percent larger than its 2000 level.
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The remainder of the paper is organized as follows. In Section 2, I discuss the related literature
on training, technological change, and the college wage premium. In Section 3, I describe the data
in detail and present the motivating facts. In Section 4, I formally describe the model and define
the equilibrium concept. In Section 5, I discuss the calibration. In Section 6, I present the results
of the decomposition exercise and discuss its implications. Section 7 concludes the paper.

2 Related Literature

Starting with the seminal contributions of Bound and Johnson (1992), Katz and Murphy (1992),
Autor, Katz, and Krueger (1998), and Krusell et al. (2000), an extensive literature has explained
the rise in the college wage premium experienced by the U.S. between the 1960s and early 2000s
as the result of skill-biased technological change (SBTC). The unifying theme of this literature is
that the introduction of new production technologies—notably, computers—has disproportionately
benefited high-skill workers because of the existence of capital-skill complementarities in production.
As a result, a fall in the relative price of capital goods increases the relative demand for high-skill
labor and exacerbates the college wage premium. Katz and Murphy (1992) formally demonstrate
this mechanism by applying a competitive model of the labor market to data from the Current
Population Survey for the period 1963-1987. Krusell et al. (2000) enrich the analysis by developing
a model that links technological change to observables and use it to decompose the college wage
premium over a longer time horizon. Ultimately, they find that the combination of cheaper capital
goods and capital-skill complementarity accounts for approximately two-thirds of the growth in the
college wage premium observed in the U.S. from 1963 to 1992.5

Clearly, however, there are many factors beyond technological change that also affect the college
wage premium.6 For example, Walker and Zhu (2008), Velden and Bijlsma (2016), and Matsuda
(2020) conduct a more thorough analysis of the college enrollment decision and document the
importance of accounting for large changes in the relative supply of high-skill labor when analyzing
changes in the college wage premium. Parro (2013), Dix-Carneiro and Kovak (2015), and Burstein
and Vogel (2017) demonstrate that reductions in trade costs exacerbate the college wage premium
at both an aggregate and a local level. Açıkgöz and Kaymak (2014) and Zentler-Munro (2021)
study the role of bargaining power by drawing attention to the different rates of deunionization
faced by high- and low-skill workers over time. Finally, He (2012) studies the impact of large-
scale changes in the age structure of the economy—specifically, the baby boom and baby bust—on
college enrollment and the college wage premium. While these alternative and complementary

5Several papers have also applied similar frameworks to analyze trends in college wage premia in other countries,
including Canada (Burbidge, Magee, and Robb, 2002; Boudarbat, Lemieux, and Riddell, 2010), the U.K. (Blundell,
Green, and Jin, 2022), Indonesia (Amiti and Cameron, 2012), Japan (Lise et al., 2014; Takahashi and Yamada, 2022),
Germany (Glitz and Wissmann, 2021), and many others.

6See, also, Card and DiNardo (2002) for a more complete discussion of some prominent alternatives to the SBTC
hypothesis.
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explanations certainly offer useful insights, the studies mentioned above generally still require a
strong role for technology—and, in particular, capital-skill complementarities in production—to
generate an empirically-consistent rise in the college wage premium. For this reason, I ultimately
focus on technological change as the main driver of the college wage premium.

Within this literature, the most closely related papers are Lindner et al. (2022) and Doepke and
Gaetani (2020). Lindner et al. (2022) study the impact of firm-level technological change on skill
demand and aggregate inequality using a quantitative model of an imperfectly competitive labor
market. In their framework, firms’ wage policies internalize the fact that higher wages attract more
workers. Therefore, in response to skill-biased technological change, firms increase the relative wage
of high-skill workers, which generates a corresponding increase in both the firm’s share of high-
skill workers and the aggregate college wage premium. In my framework, skill-biased technological
change similarly increases the share of high-skill workers and the college wage premium but for
two reasons. First, SBTC directly increases the productivity of, and return to, being a high-
skill worker. New firms respond to technological change by posting vacancies to attract high-skill
workers, while more newborn individuals respond by enrolling in college at a greater rate. Second,
the additional productivity gain from SBTC experienced by all firms encourages more of them to
provide training. Workers in high-technology firms especially benefit, as they receive both a direct
increase in productivity and a indirect increase in the probability of receiving training. Doepke and
Gaetani (2020) study the differences in college wage premia between the U.S. and Germany through
the lens of a competitive model of the labor market in which firms and workers make match-specific
investments in skill accumulation. Because the incentive to invest in skills is increasing in the
expected duration of the match, they argue that stricter employment protection laws in Germany
have particularly benefited low-skill workers and have helped to moderate the German college wage
premium over time. Contrary to Doepke and Gaetani (2020), I do not consider differences in
employment protection. Instead, I show that technology itself generates a greater incentive to
provide work-related training. The effect is most pronounced for low-skill workers, thus attenuating
the college wage premium over time.

There is also a large empirical literature devoted to estimating the causal effect of work-related
training on earnings. Studies in this literature generally find that training generates large and
persistent returns for participants. For example, Blundell, Dearden, and Meghir (1996) apply a
quasi-difference specification to a subset of individuals from the British National Child Development
Survey and estimate a 3.6 percent wage increase to male participants of employer-provided on-the-
job training courses and a 6.6 percent wage increase for employer-provided off-the-job training
courses. Parent (1999) estimates a series of OLS and IV regressions using data from the National
Longitudinal Survey of Youth (NLSY) and finds a wage effect ranging from 12 to 17 percent for
on-the-job training and 7.5 to 14 percent for off-the-job training provided by an individual’s current
employer. Leuven and Oosterbeek (2008) consider a novel identification strategy by comparing
training participants to non-participants who initially wanted to participate but were unable to
for exogenous reasons. Under this environment, the authors estimate a near-zero return to training
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participation, suggesting that there may be some selection in terms of who does and does not receive
training. In my empirical analysis of Canadian micro-data, I show that training participation is
indeed skewed toward specific worker and firm types: those who are high-skill and employed at
high-technology firms.

Finally, a few papers have attempted to link technology adoption, training, and labor market
outcomes in their empirical work. Bartel and Sicherman (1998) evaluate the effects of technological
change on individual training participation by combining the NLSY with cross-sectional industry-
level measures of computer investment, total factor productivity, and R&D intensity. Ultimately,
they find that workers are more likely to receive training as technological progress intensifies within
the industry, and that training participation rates are increasing in education. Relative to Bartel
and Sicherman (1998), the data I use allows me to identify technological change at a finer level,
namely, the firm. As a result, I show that the positive association between technology and training
carries over to the individual match-level and extends more generally to industries beyond manu-
facturing. In more recent work, Bresnahan, Brynjolfsson, and Hitt (2002), Black and Lynch (2004),
and Boothby, Dufour, and Tang (2010) use firm-level survey data to study how firms’ decisions to
adopt new technologies affects productivity and innovation through its interaction with workplace
organization and training provision. In contrast to this set of papers, I link information on tech-
nology use at the workplace level to individual employee characteristics. Accordingly, I not only
provide further evidence that high-technology firms offer more training in absolute terms, but also
show that the increased likelihood of receiving training in such firms is relatively greater for low-skill
workers.

3 Data

In this section, I document new facts related to technology, training, and the college wage premium
based on survey micro-data from Canada. Together, the facts demonstrate the key mechanism
underlying the quantitative model of Section 4.

3.1 Workplace and Employee Survey (WES)

The empirical analysis is based on data from the Workplace and Employee Survey (WES). The WES
is a matched employer-employee survey data set from Canada, which covers approximately 20,000
employees spread across 6,000 workplaces at an annual frequency from 1999 to 2006.7 I focus, in
particular, on the cross-sectional workplace and employee samples from 1999, 2001, 2003, and 2005.8

7A "workplace" in this context means "establishment."
8Because sampled workers are only followed for two years at most, the survey-weighted statistics computed on the

even-year samples of employees reflect the population statistics for the preceding (odd) survey year (minus attrition).
Further details about the data and sampling design are contained in Appendix A.
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I also restrict attention to workers aged 25 to 64 years old to limit variation in hours, employment
status, and earnings arising from full- or part-time enrollment in education and retirement.

The WES data provides two main benefits for studying the link between technological change and
the college wage premium. First, the data contain rich survey information on technological intensity
and adoption at the workplace-level. Existing studies of technology adoption and wage inequality,
such as Autor, Katz, and Krueger (1998) and Kristal (2020), are typically restricted to industry- or
occupation-level analyses. Instead, I exploit the workplace-level variation in the WES to examine
the effects of technology at a more granular level. Second, the data contain information on training
participation and provision, thereby overcoming a major challenge in the existing empirical literature
on human capital accumulation. Importantly, the ability to link employees to their employers is
crucial to identify the responsiveness of training to technology, which is a key mechanism driving
changes in the college wage premium in the model.

3.2 Definitions of Training, Education, and Technological Intensity

3.2.1 Training Participation and Provision

The WES collects information on two main types of employer-provided training: formal classroom
and informal on-the-job training. For each mode of training, both employees and employers are
asked about training duration, intensity9, subject matter, and funding sources. Since both training
types are identified as employer-provided, I define training participants as workers who have received
either classroom or on-the-job training over the past survey year and training firms as workplaces
that have provided either classroom or on-the-job training to at least one employee over the past
survey year.

Under this classification, approximately 50 to 60 percent of workers are identified as training
participants and 40 to 50 percent of workplaces are identified as training providers each year, on
average.

3.2.2 High-Skill and Low-Skill Workers

In every odd survey year, employees are asked the following series of questions:

1. Did you graduate high-school?

2. Have you received any other education?

3. What was that education?

I define high-skill workers as employees that have graduated high school (answered "yes" to question
1) and have received additional education (answered "yes" to question 2). The set of high-skill
employees thus includes college and university graduates, as well as employees with post-secondary

9For example, a measure of how many courses were taken.
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diplomas; trade, vocational, or industry certificates; and, post-graduate or professional degrees. On
the other hand, I define low-skill workers as employees that have either not graduated high-school
(answered "no" to question 1) or have graduated high-school without any additional education
(answered "yes" to question 1 and "no" to question 2).

On average, high-skill workers account for approximately two-thirds of the labor force over the
sample period. Roughly 25 to 30 percent of the overall sample are university-educated (Bachelor’s,
Master’s, Ph.D., M.D., etc.); 30 to 35 percent are college-educated (college degrees, trade or voca-
tional school, industry certified, etc.); and the remainder are high-school graduates and dropouts.

3.2.3 High-Tech and Low-Tech Firms

In each survey year, the WES questionnaire asks employers the following question:

"At this location, how many employees currently use computers as part of their normal
working duties? By computers, we mean a microcomputer, personal computer, minicom-
puter, mainframe computer or laptop that can be programmed to perform a variety of
operations."

Using the reported answers to this question and the workplaces’ total number of employees, I
construct a variable that identifies the share of a workplace’s employees who use computers regularly
on the job. Formally, for each workplace j in year t, I compute:

ShareCPUj,t =
Number of Computer Usersj,t
Total Number of Employeesj,t

. (1)

I use the estimated shares to classify employers as high- or low-technology. I define high-technology
firms as workplaces with at least 50 percent of employees using computers as part of their normal
working duties: ShareCPU ≥ 0.50. Low-technology firms comprise the remaining firms, that is,
workplaces with strictly less than 50 percent of employees using computers: ShareCPU < 0.50.10

3.3 Stylized Facts

Having defined the main variables of interest, I now establish empirically how technological change
affects the college wage premium through the response of training. I report these findings as a series
of three stylized facts.

Fact 1: High-technology firms are more productive, more likely to provide training,
and more likely to employ high-skill workers than low-technology firms.

10Autor, Katz, and Krueger (1998) use a similar strategy to identify high-technology industries. However, rather
than using a continuous measure of technological intensity, I adopt a binary classification for consistency with my
quantitative model.
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To understand the distinguishing characteristics of high- and low-technology firms, I evaluate their
differences along three dimensions: (1) productivity, (2) training, and (3) employment structure.

Table 1 presents the results from estimating a workplace-level regression of (log) revenue pro-
ductivity on a high-technology indicator; a vector of time-varying workplace-level control variables,
including industry and firm size; and year fixed-effects.11 High-technology firms are, on average,
approximately 58 percent more productive than technology firms. This finding is consistent with ex-
isting models of technology investment and firm dynamics, such as Shi (2002), in which a firm invests
in the high-technology whenever it meets or exceeds a threshold level of idiosyncratic productivity.

Table 1: Relative Productivity of High-Tech Firms

Dependent Variable: Log[Revenue Productivity]

High-Tech 0.4538∗∗∗

(0.0306)

N (Unweighted) 22,392
N (Weighted) 2,627,197

Note: Standard errors in parentheses. Standard errors are bootstrapped using the
workplace bootstrap weights provided by Statistics Canada and 100 replications.
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.10

To evaluate differences in training incidence between high- and low-technology firms, I estimate
an employee-level discrete choice regression of training participation on a high-technology indicator.
The top panel of Table 2 summarizes the estimated odds ratios, while the bottom panel reports
the average marginal effects. Column (1) reports the results of a regression controlling only for the
worker’s skill level, while Column (2) includes a richer set of time-varying individual-level control
variables (still including skill level), a set of time-varying workplace-level control variables, and year
fixed-effects. The results here imply that high-technology employees are, on average, 10.4 percent
more likely to receive training, conditional on education, and 3.4 percent more likely to participate
in training, after controlling for a host of additional observables.

11The specifications for all regressions underlying Fact 1 are stated formally in Appendix B.
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Table 2: Probability of Training Participation

Dependent Variable: Training Indicator (1) (2)

Odds Ratios
High-tech 0.4311∗∗∗ 0.1573∗∗

(0.0330) (0.0617)

High-skill 0.6847∗∗∗ 0.2895∗∗∗

(0.0335) (0.0385)

Average Marginal Effects
High-tech 0.1036∗∗∗ 0.0337∗∗

(0.0184) (0.0133)

High-skill 0.1673∗∗∗ 0.0626∗∗∗

(0.0184) (0.0084)

Additional Controls? – X

N (Unweighted) 81,622 65,814
N (Weighted) 41,405,006 31,047,424

Note: Standard errors in parentheses. Standard errors are bootstrapped using the
workplace bootstrap weights provided by Statistics Canada and 100 replications.
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.10

Finally, I assess whether the definitions of high- and low-technology firms I use are consistent with
the existing literature on technology-skill complementarities by estimating an employee-level logistic
regression of the high-technology indicator on an indicator for the worker’s skill level. As before,
the top panel of Table 3 reports the estimated odds ratios and the bottom panel reports the average
marginal effects. Column (1) controls only for training participation, while Column (2) controls
for additional workplace- and worker-level variables including occupation, age, experience, gender,
CBA coverage, immigration status, industry, firm size, and year. The estimated marginal effects
imply a 19 percent greater likelihood for high-skill workers to be employed in a high-technology
firm, conditional on receipt of training, and a 2.3 percent greater likelihood, conditional on a series
of additional covariates.
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Table 3: Probability of High-Technology Employment

Dependent Variable: High-tech Indicator (1) (2)

Odds Ratios
High-skill 0.7881∗∗∗ 0.1448∗∗∗

(0.0404) (0.0499)

Trained 0.4311∗∗∗ 0.1447∗∗

(0.0330) (0.0621)

Average Marginal Effects
High-skill 0.1916∗∗∗ 0.0233∗∗∗

(0.0095) (0.0080)

Trained 0.1039∗∗∗ 0.0232∗∗

(0.0079) (0.0100)

Additional Controls? – X

N (Unweighted) 81,622 65,532
N (Weighted) 41,405,006 31,047,424

Note: Standard errors in parentheses. Standard errors are bootstrapped using the
workplace bootstrap weights provided by Statistics Canada and 100 replications.
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.10

Fact 2: Training participation generates a significant premium on hourly earnings.

While Fact 1 establishes a positive relationship between technology and training, it remains to show
that training by itself has an effect on the college wage premium separate from technology. To
address this issue, I perform a series of Mincer (1958) style regressions to quantify the impact of
employer-provided training on hourly earnings at the worker-level, both conditionally and uncondi-
tionally. For a worker i employed by firm j in year t, the baseline specification is given by:

ln(Earningsi,t) = β0 + β1Traini,t + β2HighSkilli,t + β3HighTechj,t + β4(HighSkilli,t ×HighTechj,t)

+ θt + δXi,t + ξZj,t + εi,t

(2)

where hourly earnings are expressed in constant 1999 dollars; the vector Xi,t of individual-level
control variables includes occupation, usual weekly hours, tenure, experience, age, an indicator
for non-employer-sponsored career-related training, CBA coverage, gender, immigrant status, and
indicators for whether the worker uses computers or other types of information technologies in the
workplace; and the vector Zj,t of time-varying firm-level controls includes firm size, productivity,
and industry.

The coefficient of interest is β1 and identifies the impact of training participation on (log)
hourly earnings. Importantly, I also control for the effects of workers’ skills (captured by β2), the

11



Table 4: Impact of Training Participation on Earnings

Dependent Variable: Log[Hourly Earnings] (1) (2)

Trained 0.1407∗∗∗ 0.0292∗∗∗

(0.0119) (0.0079)
High-skill 0.1804∗∗∗ 0.0641∗∗∗

(0.0110) (0.0090)
High-tech 0.1310∗∗∗ 0.0120

(0.0171) (0.0125)
High-skill × High-tech 0.063∗∗∗ 0.0737∗∗∗

(0.0203) (0.0166)

Additional Controls? – X
N (Unweighted) 81,622 65,532
N (Weighted) 41,405,006 30,899,192

Note: Standard errors in parentheses. Standard errors are bootstrapped using the
employee bootstrap weights provided by Statistics Canada and 100 replications.
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.10

technology of worker i’s employer (captured by β3), and an interaction between worker skills and
employer technology (captured by β4) to control for potential earnings effects from technology-skill
complementarities. Table 4 reports the results from performing this regression after accounting for
the complex survey design of the WES.

Column (1) on the left reports the results from the regression omitting all control variables
except for the ones specified—that is, without θt, Xi,t, and Zj,t. Column (2) on the right reports
the results from the regression with additional controls. In both cases, training participation is
shown to have an economically and statistically significant impact on individual earnings. For
the baseline case—conditioning only on education and employer type—training participation is
associated with a roughly 15 percent increase in hourly earnings, while in the preferred specification
with additional controls, training participation is associated with a 3 percent increase in hourly
earnings. The positive wage effect of training is robust to various alternative sets of control variables
and clustering standard errors by workplace.

Fact 3: Technology-induced training dampens the college wage premium.

The main limitation of the WES micro-data is the short time horizon that it covers: it is simply
not possible to obtain a direct measure of how training has evolved for high- and low-skill workers
over time. However, it is possible to recover an indirect estimate of the evolution by exploiting the
properties of technological change. In particular, if a relatively larger share of firms in 1980 were
low-technology, then one way to indirectly assess the evolution of training participation by skill level
is to measure how much the rate of training participation increases for each group when comparing
low-technology to high-technology employees in the cross-section. Performing this exercise yields
the results reported in Table 5.

Columns 2 and 3 list the share of training participants within low- and high-technology firms,
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Table 5: Training Participation Rates by Education and Technology

Training Participation Rates (%)

Skill-Group Low-Tech High-Tech Change

Low-Skill 37.48 50.62 35.04
High-Skill 55.95 65.07 16.30

Note: The column "Change" reports the difference in train-
ing participation rates (in percent) between low- and high-
technology firms, conditional on skill group.

respectively, conditional on a worker’s skill level. Column 4 reports the relative increase in training
participation for a worker of a given skill level when moving from a low- to a high-technology firm.
As illustrated, the increased likelihood of receiving training in high-technology firms is much more
pronounced for low-skill workers: low-skill workers experience a 35 percent increase in the probability
of receiving training, while high-skill workers experience a 16 percent increase. Put differently, the
relative training participation rate for low-skill workers is 67 percent in low-technology firms and
78 percent in high-technology firms. A broader implication of this result is that, conditional on
being employed in a high-technology firm, the college wage premium is smaller among the subset
of trained workers. This is precisely the result shown in Figure 1.

4 Model

To better understand the aggregate implications of the stylized facts presented in Section 3, I now
develop a quantitative model of the labor market, which connects human capital investments in
education and training to an aggregate process of skill-biased technological change in the spirit
of Shi (2002) and Salgado (2020). The model features two levels of education and two levels
of production technologies, as in the data. The shares of worker and firm types are determined
endogenously in equilibrium. Workers decide their level of education prior to entering the labor
market by solving a trade-off between the financial and non-pecuniary cost of enrollment and the
expected return, which internalizes the probability of finding employment and receiving training.
On the other side of the market, firms choose their production technologies at the time of posting
vacancies by solving a trade-off between the higher setup cost associated with the high-technology
and the expected return, which internalizes the firm’s optimal training and wage policies conditional
on matching.

4.1 Environment

Time is discrete and continues forever, t = 0, 1, 2, . . . . Three types of agents populate the econ-
omy: workers, firms, and a government. The mass of workers is normalized to 1 and the mass of
firms is endogenously determined through free entry into the labor market. Workers are ex-ante
heterogeneous in innate ability a, risk neutral, and discount future income with factor β ∈ (0, 1).
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Figure 1: College Wage Premium by Technology and Training
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I assume that innate ability a takes on one of ma possible values, that is, a ∈ {a1, a2, . . . , ama}.
Firms are ex-ante heterogeneous in productivity z, risk neutral, and share the same discount factor
β. I assume that firm productivity z takes on one of mz possible values, that is, z ∈ {z1, . . . , zmz}.
The government sets lump-sum taxes τ on labor income to finance the economy’s unemployment
insurance program.

As workers choose their level of education s ∈ {0, 1} prior to entering the labor market, it is
convenient to envision each period unfolding in two stages: an education stage and a labor market
stage. In the education stage, individuals decide—conditional on their innate ability a—whether
to invest in post-secondary education by paying the cost of enrollment cs − ζs > 0 and enter the
labor market as a type-(a, 1) high-skill worker, or to forgo additional education and enter the labor
market as a type-(a, 0) low-skill worker. Once a worker enters the labor market, their education
level s is fixed for the remainder of their life. In the labor market stage, workers simply shift between
employment and unemployment depending on the shocks they experience over their working life.

The labor market is composed of a continuum of submarkets indexed by the set (a, s, z, k, x, ω),
consisting of worker innate ability a, worker education s ∈ {0, 1}, firm productivity z, firm tech-
nology k ∈ {0, 1}12, firm training provision x ∈ {0, 1}, and the piece-rate ω ∈ [0, 1] posted by the
firm. The piece-rate represents the fraction of output promised to the worker each period. For con-
venience, let sw = (a, s) represent the vector of worker types and sf = (z, k, x) represent the vector
of firm types. There is no uncertainty. Search is directed in the sense that an unemployed worker of
type sw observes the firm types sf and piece-rates ω posted within each submarket prior to making
their application decision. The assumptions regarding the information environment imply that,
when searching, an unemployed worker knows whether the firm has invested in the high-technology
and whether they will receive training when computing their expected value from employment; and
there is no incentive for either party to renegotiate contracts ex-post once a match is formed.

Matches within each submarket are governed by a constant-returns-to-scale matching function
m(u, v), where u represents the mass of unemployed searchers and v represents the associated mass
of vacancies in a given submarket. Let θ ≡ v/u denote the ratio of vacancies to unemployment, or
tightness, of a submarket. Then, for a submarket with tightness θ(sw, sf , ω), the probability that a
worker successfully finds a job is given by:

p (θ(sw, sf , ω)) =
m (u(sw, sf , ω), v(sw, sf , ω))

u(sw, sf , ω)
∈ (0, 1). (3)

On the other hand, the probability that a vacant job successfully finds a worker is given by:

q (θ(sw, sf , ω)) =
m (u(sw, sf , ω), v(sw, sf , ω))

v(sw, sf , ω)
∈ (0, 1). (4)

Matches only end for exogenous reasons. With probability ηs ∈ (0, 1), an existing match is exoge-

12Here, k = 1 represents the high-technology while k = 0 represents the low-technology.
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nously separated each period; and, with probability δ ∈ (0, 1), an existing worker exogenously leaves
the economy each period. When a match receives a separation shock ηs, the job is destroyed and the
worker transitions to unemployment. When a worker receives an exit shock δ, the job is destroyed
and the worker is replaced by a newborn worker of the same type, who enters the education stage
next period.13

Timing within a period occurs as follows. First, a mass δ of newborn workers make their ed-
ucation decisions. In the following period, these workers will enter the labor market as a type-sw
unemployed worker. Second, idiosyncratic shocks are realized. Existing matches are exogenously
separated with probability ηs and existing labor market participants exogenously exit the market
with probability δ. Third, potential entrant firms pay cost κ to draw productivity z and, conditional
on the realization of productivity, decide whether to invest in the high-technology. Given its pro-
ductivity and technology, the firm chooses a contract consisting of a piece-rate ω and training policy
x to post in a submarket to attract type-sw unemployed workers. On the other side of the mar-
ket, unemployed type-sw workers direct their search to the submarket that maximizes their lifetime
value. Fourth, matching occurs. Unfilled vacancies and unemployed job seekers are matched in each
submarket according to the matching function m(u, v) described above. Fifth, production occurs.
Firms execute their contractual obligations by paying the training cost cx(s) and produce output
according to the production function y(sw, sf ). Finally, payments are made. Firms earn operating
profits (1−ω)y(sw, sf ), employed workers earn net income ωy(sw, sf )− τ , and unemployed workers
earn unemployment insurance bs.

4.2 Firms

4.2.1 Production

There is a large mass λ of firms each period, which is determined by free entry. Each firm employs
at most one worker. When matched with a worker of type-sw, a firm of type-sf produces output
y(sw, sf ) according to the following production technology:

y(sw, sf ) = εx(s)xεk(s)
kzahs, (5)

where εx(s) and εk(s) capture, in a reduced-form way, the productivity gains earned through training
and technological investments by the firm; and, hs represents the productivity gain earned through
investments in education by the worker. I assume that εx(s) > 1 and εk(s) > 1 for all s, h0 = 1,
and h1 > 1.

13Hence, with a mass of workers normalized to 1, δ represents both the probability of exiting and the mass of
entering workers each period.
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4.2.2 Firm Value Function

Consider a match of type (sw, sf , ω) and let Π(sw, sf , ω) denote the continuation profit for the
firm—that is, the profit accrued to the firm in every period after paying the training cost in period
1. Then, Π(sw, sf , ω) solves the following recursive equation:

Π(sw, sf , ω) = (1− ω)y(sw, sf ) + β(1− δ)(1− ηs)Π(sw, sf , ω). (6)

Let JF (sw, sf , ω) denote the lifetime value for the same firm. The only difference between Π(sw, sf , ω)

and JF (sw, sf , ω) is that the latter includes a one-time training cost, conditional on providing train-
ing. That is, JF (sw, sf , ω) solves:

JF (sw, sf , ω) = (1− ω)y(sw, sf )− cx(s)x+ β(1− δ)(1− ηs)Π(sw, sf , ω), (7)

where cx(s) > 0 is the lump-sum cost of training. In the current period, a firm earns revenue from
output y(sw, sf ) net of the wage bill ωy(sw, sf ) and training cost cx(s), conditional on training
(x = 1). In the following period, the match survives with probability (1− δ)(1− ηs), in which case
the firm earns continuation value Π(sw, sf , ω). Hence, when a firm commits to providing training,
x = 1, it must pay for training once even though the return to training—captured in εx(s)—accrues
to the match for as long as it survives.

4.2.3 Free Entry and the Zero Profit Condition

Each period, firms enter submarkets until the value of a vacancy in each submarket is driven to zero.
By paying cost κ, a potential entrant draws a level of productivity z and decides whether to invest
in the high-technology, k ∈ {0, 1}. Conditional on the choice of technology k and its productivity
z, the firm must also decide the terms of the contract (x, ω) to post along with its vacancy. Hence,
the zero profit condition for submarkets is given by:

κ+ ck(s)k = q(θ(sw, sf , ω))JF (sw, sf , ω), (8)

where q(θ(sw, sf , ω)) is the job-filling probability in submarket (sw, sf , ω). Therefore, firms who
invest in the high-technology pay cost κ + ck(s) to post a vacancy, while firms who maintain the
low-technology only pay κ. The solution to this problem yields tightness θ(sw, sf , ω) for each
submarket and job finding probabilities p(θ(sw, sf , ω)), which are required to solve the worker’s
problem.

4.3 Workers

The mass of workers is normalized to 1. Over their lifetime, workers occupy three possible states:
employed at a firm of type-sf and receiving piece-rate ω; unemployed and earning unemployment
insurance bs; or out of the labor force. Note that workers who are out of the labor force only consist
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of newborn workers who have yet to make their education decision—there is no explicit labor force
participation decision.

4.3.1 Employed Value Function

Consider first an employed worker of type-sw, who is working at a firm of type-sf that provides
a piece-rate of ω each period. Let VE(sw, sf , ω) denote the lifetime value for this worker. Each
period, the worker simply consumes their earnings, while facing exogenous probabilities ηs ∈ (0, 1)

and δ ∈ (0, 1) of getting hit by a job separation or exit shock, respectively. In the case of receiving
a separation shock ηs, the worker transitions to unemployment and receives continuation value
VU (sw); in the case of receiving an exit shock, the worker receives a value of 0 and is replaced by
a newborn worker of the same ability a in the following period. Conditional on surviving both
shocks, however, the worker retains the value VE(sw, sf , ω) from employment into the next period.
Accordingly, the value function VE(sw, sf , ω) solves the following recursive equation:

VE(sw, sf , ω) = ωy(sw, sf )− τ + β(1− δ)
[
ηsVU (sw) + (1− ηs)VE(sw, sf , ω)

]
, (9)

where τ ≥ 0 is a lump-sum tax on labor earnings collected by the government.

4.3.2 Unemployed Value Function

Each period, an unemployed worker of type-sw decides which submarket (sw, sf , ω) to search in.
With probability p(θ(sw, sf , ω)), the worker successfully finds a job offering piece-rate ω and re-
ceives value VE(sw, sf , ω) in the next period conditional on survival; otherwise, the worker remains
unemployed and receives value VU (sw). Hence, VU (sw) solves:

VU (sw) = max
(sf ,ω)

bs + β(1− δ)
[
p(θ(sw, sf , ω))VE(sw, sf , ω) + (1− p(θ(sw, sf , ω))VU (sw)

]
. (10)

4.3.3 Education Decision

Newborn workers with innate ability a make their education decisions at the start of each period.
This decision involves paying a cost cs − ζs > 0 to enroll in education level s = 1 and earn
human capital hs, where I assume that h0 = 1 and h1 > 1. To understand this formulation of
the cost function, it is convenient to think of cs capturing the financial costs of enrollment and ζs
representing unmodeled preferences for higher education, which may include various non-monetary
costs associated with enrollment.

I assume that the stochastic component of the cost function, ζs, follows a Type-I Extreme Value
distribution with zero location parameter and scale parameter χs > 0. Following this decision, a
worker enters the labor market as a type-sw unemployed worker in the following period. Accordingly,
the optimal education policy for a worker with innate ability a, before the realization of the shock
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ζs, solves:

s(a) = arg max
s∈{0,1}

Eζs
{
s [β(1− δ)VU (a, 1)− cs + ζs] + (1− s)β(1− δ)VU (a, 0)

}
(11)

The introduction of Type-I Extreme Value shocks into the education decision implies that a worker’s
education policy is a probability.

4.4 Government

The government levies lump-sum taxes on labor income τ to finance unemployment insurance bs. I
assume that the government balances its budget in every period. Each period, total unemployment
insurance is equal to ∑

sw

bsu(sw, sf , ω), (12)

where u(sw, sf , ω) is the mass of type-sw unemployed job searchers in submarket (sw, sf , ω). Hence,
the government’s budget constraint is given by:

τ
∑

sw,sf ,ω

[1− u(sw, sf , ω)] =
∑
sw

bsu(sw, sf , ω). (13)

4.5 Equilibrium

A stationary equilibrium for this economy consists of a set of value functions {VE , VU} for workers;
value functions {JF ,Π} for firms; search and education policy functions {(sf , ω), s} for workers;
a distribution of matches ΩE(sw, sf , ω); a distribution of unemployed workers over ability and
education ΩU (sw); a distribution of non-labor force participants ΩD(a); taxes {τ}; and tightness
θ(sw, sf , ω) for each submarket such that:

1. Worker Optimization: The value functions VE(sw, sf , ω) and VU (sw) solve (9), (10), and (11),
with associated policy functions {s(a), ω(a, s(a)), x(a, s(a)), z(a, s(a)), k(a, s(a))}.

2. Firm Optimization: The value function JF (sw, sf , w) solves (7).

3. Free Entry: Firms enter submarkets until the zero-profit condition (8) holds.

4. Government Budget Balance: The government’s budget constraint (13) holds with equality in
every period.

5. The distributions of workers across employment states (ΩE(sw, sf , ω),ΩU (sw),ΩD(a)) are sta-
tionary.
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5 Calibration

The model solution consists of an initial and final steady state. To calibrate the steady states,
I drawn on some values from the literature, calculate others directly from data, and choose the
remainder to match salient features of the Canadian economy in 1980 and the early 2000s.

5.1 Functional Forms

The only functional form required to specify prior to calibration is the matching function. For this, I
follow Den Haan, Ramey, and Watson (2000) and use a constant returns to scale matching function
of the following form:

m(u, v) =
u · v

(uξ + vξ)
1/ξ
, (14)

where ξ is the matching elasticity, u is the mass of unemployed workers, and v is the associated
mass of vacancies in a given submarket.

5.2 Externally-Calibrated Parameters

Table 6 below lists the parameters determined outside of the model. I assume that all externally-
calibrated parameters remain constant between the two steady states.

A period in the model corresponds to one-quarter in the data. As a result, I set the discount
factor β to 0.987, implying an aggregate interest rate of 5 percent annually in steady state. The
exogenous rate of job separation, ηs, varies by skill group: for high-skill workers, I use a value of
ηH = 0.0238 and, for low-skill workers, I use a value of ηL = 0.0501. The labor market exit rate, δ,
is set to 0.0063, so that the average working life is 40 years. The matching elasticity is set to 1.60,
as in Schaal (2017). The shape parameter for the Extreme Value Type-I distribution governing the
taste shocks is set to 0.40 to ensure an interior solution. Finally, as a normalization, I set h0 = 1.

Table 6: Parameters determined outside of the model

Parameter Value Source

β Discount factor 0.987 Risk-free rate of 5%
ηs0 Separation rate (Low-skill) 0.050 Flinn and Mullins (2015)
ηs1 Separation rate (High-skill) 0.024 Flinn and Mullins (2015)
ξ Matching elasticity 1.600 Schaal (2017)
δ Exit rate 1

160 Average working life of 40 years
hs0 Productivity from base education 1.000 Normalization
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5.3 Internally-Calibrated Parameters

The remaining parameters of the model are calibrated in two stages. In the first stage, I calibrate
the entire set of parameters to empirical averages from the WES micro-data. This exercise yields
a solution to the final steady state of the model. In the second stage, I fix a set of 7 parameters,
{κ, hs1 , εx(s1), εx(s0), εk(s0), ck(s0), ck(s1))}, to their final steady state values and vary the remain-
ing 4 parameters, {cs, cx(s0), cx(s1), εk(s1)}, such that the share of high-skill workers and training
participants by education in the initial steady state match their 1980 empirical averages, and the
model-implied increase in the college wage premium is consistent with the actual increase between
1980 and 2000.14 Table 7 reports the results of the calibration exercise.

As indicated in the third panel of Table 7, I set the vacancy posting cost κ to match an average
unemployment rate of 7 percent, which was obtained using publicly-available aggregate information
on the unemployment rate from the OECD. I allow unemployment insurance, bs, to vary across
education groups and set b0 and b1 such that unemployment insurance covers 40% of the average
earnings for low- and high-skill workers in the final steady state, respectively. The productivity
gain earned from education, captured by hs1 , is set to match a college wage premium of 1.37.
The productivity gain earned from training, captured by εx(s1) and εx(s0), are set to match the
mean earnings premium accrued by low- and high-skill training participants, respectively, which in
the data amount to 1.14 and 1.16. The productivity gain from high-tech employment for low-skill
workers, captured by εk(s0), is set to match the average wage premium of 1.19 for low-skill workers
employed by high-tech firms. Finally, the setup costs associated with the high-technology varies
by education to ensure that both types of workers are hired by high-technology firms, as in the
data. The parameters ck(s0) and ck(s1) are set to match the average share of low- and high-skill
employees at high-technology firms, respectively.

The parameters reported in the top and middle panels of Table 7 vary across steady states.
These parameters govern the cost of post-secondary education cs, the cost of training provision by
education cx(s), and the productivity gain from high-tech employment for high-skill workers—that
is, the complementarity between high-skill labor and technology. In both cases, the cost parameters
are set to match the shares of high-skill workers and training participants by education in the given
years. However, since the WES only includes information on high-technology employment for the
final steady state, I am required to follow a different procedure for calibrating the complementarity
parameter εk(s1). For the final steady state, I compute an average wage premium of 1.28 for high-
skill workers in high-technology firms directly from the WES micro-data. For the initial steady
state, I set εk(s1) to match an average increase in the college wage premium of 12.5 percent, given a
college premium in the final steady state of 1.37. The targeted value of 12.5 percent is chosen as an

14The share of high-skill workers in 1980 comes from publicly-accessible OECD data. The share of training
participants by education in 1980 comes from Statistics Canada (2001) using the 1983-1985 Adult Education and
Training Survey (AETS). Finally, the average increase in the college wage premium is taken to be an intermediate
value across existing estimates.
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intermediate value between the estimate of 0 percent reported in Kryvtsov and Ueberfeldt (2009)
and 25 percent reported in Boudarbat, Lemieux, and Riddell (2010).

Table 7: Parameters determined jointly in equilibrium

Parameter Value Target Data Model

1980 Calibration:
Education cost cs 90.00 Share of high-skill workers 0.23 0.23
Low-skill training cost cx(s0) 10.91 Share of low-skill training participants 0.11 0.13
High-skill training cost cx(s1) 3.04 Share of high-skill training participants 0.35 0.36
High-skill prod. from high-tech εk(s1) 1.06 Average increase in the college wage premium 0.13 0.10

2000 Calibration:
Education cost cs 75.86 Share of high-skill workers 0.68 0.67
Low-skill training cost cx(s0) 9.07 Share of low-skill training participants 0.26 0.27
High-skill training cost cx(s1) 3.45 Share of high-skill training participants 0.42 0.45
High-skill prod. from high-tech εk(s1) 1.07 Average high-skill high-tech premium 1.28 1.20

Both Years:
Vacancy posting cost κ 3.48 Average unemployment rate 0.07 0.06
Productivity from education hs1 1.09 Average college wage premium 1.37 1.36
Low-skill prod. from training εx(s0) 1.05 Average low-skill training premium 1.16 1.17
High-skill prod. from training εx(s1) 1.01 Average high-skill training premium 1.14 1.19
Low-skill prod. from high-tech εk(s0) 1.07 Average low-skill high-tech premium 1.19 1.16
Low-skill cost of high-tech ck(s0) 2.05 Share of low-skill high-tech workers 0.36 0.36
High-skill cost of high-tech ck(s1) 16.60 Share of high-skill high-tech workers 0.57 0.58

Notes: The targets for all parameters in the middle (2000 Calibration) and bottom (Both Years) panels are drawn
from the Workplace and Employee Survey (WES). For the 1980 calibration, the share of high-skill workers is taken
from publicly-available OECD data, training participation rates by education are taken from Statistics Canada
(2001), and the average increase in the college wage premium is an intermediate value of the estimates reported by
Kryvtsov and Ueberfeldt (2009) and Krueger et al. (2010).

6 Quantifying the Importance of Training

The calibrated model provides an exact decomposition of the increase in the college wage premium
into three parts: (1) changes in the relatively complementarity between skills and technology, which
is governed by the parameter εk(s1); (2) changes in the share of high-skill workers, which is governed
by the parameter cs; and (3) changes in the shares of training participants by education, which are
governed by the parameters cx(s0) and cx(s1). Accordingly, in this section, I use the model to
perform a decomposition analysis and, ultimately, quantify the contribution of training on the rise
in the college wage premium.

To this end, I start in the initial steady state and sequentially allow each subset of parameters
to adjust to their final steady state values. Following each simulation, I compute the model-implied
level of, and change in, the college wage premium and measure their difference from the counterparts
computed in the previous step. Finally, I compute the relative contribution of each channel by
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Table 8: Decomposition Results

Setting
(1) (2) (3) (4)

Technology-Skill Complementarity, εk – X X X
Education Cost, cs – – X X
Training Costs, cx – – – X

College wage premium (%) 27.78 31.51 32.22 30.50
College wage premium (Ratio) 1.32 1.37 1.38 1.36
Share of high-skill workers 0.23 0.32 0.71 0.67
Share of high-skill trained workers 0.36 0.95 0.53 0.45
Share of low-skill trained workers 0.13 0.04 0.00 0.27
Share of high-skill high-tech workers 0.58 0.97 0.56 0.58
Share of low-skill high-tech workers 0.36 0.65 0.28 0.36

– indicates that the parameter value is held fixed at initial (1980) value.
Xindicates that the parameter value varies across steady states.

comparing the estimated difference at each step to the overall change in the premium.15 The results
from performing this exercise are summarized in Table 8.

Consider first columns (1) and (2) of Table 8. The difference in moments reported between
the two columns solely reflects changes in the relative complementarity between high-skill labor
and technology, that is, εk(s1). Relative to the initial steady state, the college wage premium in
this environment increases by 3.73 percentage points, or 13.4 percent over the 1980 level. The
increase in the college wage premium therefore overshoots the model-attained value of 9.79 percent
by an additional 37 percent. This phenomenon occurs because the increase in technology-skill
complementarity encourages firms to invest in the high-technology and raise their demand for high-
skill workers. Combined with the positive association between technology and training, high-skill
workers experience an extra boost in the probability of receiving training on the job. Therefore,
increased labor demand and training participation for high-skill workers jointly act to raise the
college wage premium.

The difference in values reported in columns (2) and (3) of Table 8 reflect the joint impact
of changes in technology-skill complementarity and the costs of post-secondary education. In this
environment, the college wage premium increases even further from 31.51 percent to 32.22 percent,
implying an increase of 16 percent over the 1980 level. Although the lower cost of education generates
a much larger equilibrium share of high-skill workers, its effect on the college wage premium is
completely undone by the response of training. In particular, the large increase in the supply
of high-skill workers encourages new entrant firms to shift from posting vacancies with training to
posting vacancies for high-skill workers. In the new equilibrium, the training gap widens as virtually

15Because training has a dampening effect on the premium, I take the sum of the absolute changes as the measure
of the overall change.
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no low-skill workers participate.
Finally, Column (4) of Table 8 reports the estimated moments from the final steady state—that

is, after allowing all 4 parameters to vary across steady states. By comparing the difference in
moments between columns (3) and (4), I obtain an measure of how much changes in training costs
have dampened the increase in the college wage premium. In particular, with training costs held
fixed (Column (3)), the college wage premium increases by 16 percent over its 1980 value. Once
training costs are allowed to vary (Column (4)), the college wage premium increases by only 9.79
percent over its 1980 value. Therefore, absent changes in training costs, the increase in the college
wage premium would have been 63 percent larger between 1980 and the early 2000s. On the other
hand, the measured level of the college wage premium would have been 6 percent larger in the final
steady state.

Across all experiments, the level of the college wage premium experiences an absolute change
of 8.33 percentage points. Most of this change—approximately 60 percent—is driven by changes in
technology-skill complementarity, indicating that technological change is indeed the driving force of
the college wage premium. Changes in training account for the next largest share—28 percent—and,
in fact, dampen the premium. This finding is consistent with recent work by Doepke and Gaetani
(2020), who find increased on-the-job human capital accumulation among low-skill workers helps
to explain the relatively subdued growth in the college wage premium experienced in Germany
compared to the United States.

7 Conclusion

A large quantitative literature has established a tight link between the introduction of new tech-
nologies and rising college wage premia around the globe. In this paper, I use matched employer-
employee survey data from Canada to highlight that the diffusion of technological change across
firms has also generated a meaningful increase in training participation among workers—particularly,
low-skill workers—which, because of the earnings premium associated with training, has dampened
the college wage premium over time.

To reach this conclusion, I start by documenting a new set of facts using the Canadian micro-
data. I show that (1) high-technology firms tend to be relatively more productive, provide more
training, and hire more high-skill employees than low-technology firms; (2) training participants
earn between 3 to 14 percent more on hourly earnings relative to non-participants; and (3) relative
increases in training participation among low-skill workers reduce the college wage premium.

I use these features of the Canadian data to discipline a quantitative model of the labor market
and generate the structure necessary to analyze the main drivers of the college wage premium.
Consistent with existing evidence, I find that technology-skill complementarity accounts for the
greatest share (60 percent) of absolute variation in the college premium over time. Importantly,
however, I also find that a relative expansion in training participation among low-skill workers
played a crucial role in dampening the college wage premium between 1980 and the early 2000s. In
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particular, absent changes in training costs, the rise in the college wage premium would have been
63 percent larger over this period. This latter finding suggests that potential gains in equity between
high- and low-skill workers may be recovered if policymakers develop programs to encourage training
participation among low-skill workers.
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A Data Sources

A.1 Workplace and Employee Survey (WES)

The main data source for this paper is the Workplace and Employee Survey (WES). The WES is
a matched employer-employee survey data set from Canada, which covers approximately 20,000
employees and 6,000 employers at an annual frequency from 1999 to 2006. In each year, the
WES contains two components: a workplace component and an employee component. The target
population for the workplace component consists of all business locations operating in Canada
with paid employees in March of the survey year with the exception of employers operating in the
Territories; crop or animal production; fishing, hunting, and trapping; private households, religious
organizations, or public administration. Hence, each observation in the workplace component of
the WES is an establishment. In the main text, I use the words "workplace", "establishment",
"employer", and "firm" interchangably. The target population for the employee component of
the WES consists of all employees working or on paid leave in March of the survey year who (1)
are employed by an establishment in the workplace component and (2) receive a Canada Revenue
Agency T-4 Supplementary form. Workers receiving T-4 slips from multiple different workplaces
are counted as distinct observations in the employee component of the WES.

The sampling methodology of the WES is divided into two parts. First, a sample of employers
is drawn from the Business Register at Statistics Canada. Second, employees from the participating
workplaces are selected at random from lists provided by employers to the surveyors. The initial
sample was drawn in 1999. Every two years, a subset of new employers is added to the workplace
component from establishments added to the Business Register since the last survey occasion. Every
two year, a new sample of employees from the participating workplace is also drawn. Hence, the
employee component of the WES is fully refreshed every odd year, while the workplace component
is only partially refreshed. I pool the cross-sectional data from the 1999, 2001, 2003, and 2005
surveys, and restrict attention to workers of age 25 to 64 years old.

The main variables of interest from the WES include: educational attainment, classroom and
on-the-job training participation, and earnings on the employee side; and, firm size, the share of
employees using computers, and classroom or on-the-job training provision on the workplace side.
Details about how I construct the measures of skills, training, and technology used in the empirical
analysis are contained in the main text.

A.2 Additional Data Sources for Calibration

For the calibration of the initial steady state, I use two additional data sources. The first is publicly-
available aggregate data from the OECD, which is available here. I use the OECD data to obtain
a target for the average unemployment rate and share of high-skill (tertiary-educated) workers in
1980. The second source is Statistics Canada (2001), which documents training participation rates
by education from the past revisions of the Adult Education and Training Survey (AETS).
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B Empirical Specifications

The regression specifications underlying Fact 1 of Section 3 in the main text are detailed below.
In all cases, I estimate the standard errors by bootstrap using the bootstrap weights provided by
Statistics Canada and 100 replications.

B.1 Workplace-Level Productivity

In the first regression, I estimate the effect of technology on (log) revenue productivity according to
the following specification:

ln(Productivityj,t) = β0 + β1HighTechj,t + ξZj,t + θt + εj,t. (15)

where j indexes firms and t indexes time. The main covariate of interest is HighTechj,t, which is
an indicator equal to 1 if firm j is a high-tech firm and 0 if low-tech. I also include a vector Zj,t of
time-varying workplace-level control variables, which includes industry, training provision, and firm
size; a set of year-fixed effects θt; and an error term εj,t.

B.2 Employee-Level Training Participation

In the second regression, I estimate the probability of training participation at the employee-level
to evaluate whether employees of high-technology firms are relatively more or less likely to receive
training. To this end, I estimate a logistic regression of the following form:

Pr[Traini,t = 1] = β0 + β1HighTechj,t + β2HighSkilli,t + δXi,t + ξZj,t + θt + εi,t, (16)

where, again, i indexes individuals, j indexes firms, and t indexes time. The main covariate of
interest is the indicator HighTechj,t, which equals 1 if worker i’s employer j is a high-technology
firm. I also control for the worker’s level of education, HighSkilli,t, a set of time-varying employee-
level covariates Xi,t, a set of time-varying workplace-level covariates Zj,t, year fixed-effects θt, and
an error term εi,t.

B.3 Probability of High-Technology Employment

For the third regression, I estimate the probability of being employed by a high-technology firm.
That is, for each individual i employed by workplace j in year t, I estimate the following logistic
regression:

Pr[HighTechj,t = 1] = β0 + β1HighSkilli,t + δXi,t + ξZj,t + θt + εi,t, (17)

where HighTechj,t indicates whether employee i’s workplace j is high-technology; HighSkilli,t is an
indicator for whether employee i is a high-skill worker; Xi,t is a vector of time-varying worker-level
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control variables, which includes training participation, occupation, age, experience, gender, CBA
coverage, immigration status, and tenure; and Zj,t is a vector of time-varying workplace-level control
variables, which includes industry, firm size, and productivity.
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